Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A unified likelihood-based approach is proposed to estimate population size for a continuous-time closed capture-recapture experiment with frailty. The frailty model allows the capture intensity to vary with individual heterogeneity, time, and behavioral response. The individual heterogeneity effect is modeled as being gamma distributed. The first-capture and recapture intensities are assumed to be in constant proportion but may otherwise vary arbitrarily through time. The approach is also extended to capture-recapture experiments with possible random removals. Simulation studies are conducted to examine the performance of the proposed estimators. By asymptotic efficiency comparison and simulation studies, the proposed estimators have been shown to be superior to their discrete-time model counterparts in genuine continuous-time capture-recapture experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1541-0420.2006.00623.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!