Regulatory circuit of human microRNA biogenesis.

PLoS Comput Biol

Department of Computational Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America.

Published: April 2007

miRNAs (microRNAs) are a class of endogenous small RNAs that are thought to negatively regulate protein production. Aberrant expression of many miRNAs is linked to cancer and other diseases. Little is known about the factors that regulate the expression of miRNAs. We have identified numerous regulatory elements upstream of miRNA genes that are likely to be essential to the transcriptional and posttranscriptional regulation of miRNAs. Newly identified regulatory motifs occur frequently and in multiple copies upstream of miRNAs. The motifs are highly enriched in G and C nucleotides, in comparison with the nucleotide composition of miRNA upstream sequences. Although the motifs were predicted using sequences that are upstream of miRNAs, we find that 99% of the top-predicted motifs preferentially occur within the first 500 nucleotides upstream of the transcription start sites of protein-coding genes; the observed preference in location underscores the validity and importance of the motifs identified in this study. Our study also raises the possibility that a considerable number of well-characterized, disease-associated transcription factors (TFs) of protein-coding genes contribute to the abnormal miRNA expression in diseases such as cancer. Further analysis of predicted miRNA-protein interactions lead us to hypothesize that TFs that include c-Myb, NF-Y, Sp-1, MTF-1, and AP-2alpha are master-regulators of miRNA expression. Our predictions are a solid starting point for the systematic elucidation of the causative basis for aberrant expression patterns of disease-related (e.g., cancer) miRNAs. Thus, we point out that focused studies of the TFs that regulate miRNAs will be paramount in developing cures for miRNA-related diseases. The identification of the miRNA regulatory motifs was facilitated by a new computational method, K-Factor. K-Factor predicts regulatory motifs in a set of functionally related sequences, without relying on evolutionary conservation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1853126PMC
http://dx.doi.org/10.1371/journal.pcbi.0030067DOI Listing

Publication Analysis

Top Keywords

regulatory motifs
12
mirnas
8
aberrant expression
8
expression mirnas
8
upstream mirnas
8
protein-coding genes
8
mirna expression
8
motifs
7
regulatory
5
expression
5

Similar Publications

Background: Genetic studies have associated thousands of enhancers with breast cancer (BC). However, the vast majority have not been functionally characterized. Thus, it remains unclear how BC-associated enhancers contribute to cancer.

View Article and Find Full Text PDF

The elongation of tissues and organs is important for proper morphogenesis in animal development. In Drosophila ovaries, the elongation of egg chambers involves aligned Collagen IV fiber-like structures, a gradient of extracellular matrix stiffness and actin-based protrusion-driven collective cell migration, leading to the rotation of the egg chamber. Egg chamber elongation and rotation depend on the atypical cadherin Fat2.

View Article and Find Full Text PDF

Transcriptional activation and coactivator binding by yeast Ino2 and human proto-oncoprotein c-Myc.

Curr Genet

January 2025

Center for Functional Genomics of Microbes, Institut Für Genetik Und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany.

Basic helix-loop-helix domains in yeast regulatory proteins Ino2 and Ino4 mediate formation of a heterodimer which binds to and activates expression of phospholipid biosynthetic genes. The human proto-oncoprotein c-Myc (Myc) and its binding partner Max activate genes important for cellular proliferation and contain functional domains structure and position of which strongly resembles Ino2 and Ino4. Since Ino2-Myc and Ino4-Max may be considered as orthologs we performed functional comparisons in yeast.

View Article and Find Full Text PDF

Uncovering the whole genome silencers of human cells via Ss-STARR-seq.

Nat Commun

January 2025

Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.

Silencers, the yin to enhancers' yang, play a pivotal role in fine-tuning gene expression throughout the genome. However, despite their recognized importance, comprehensive identification of these regulatory elements in the genome is still in its early stages. We developed a method called Ss-STARR-seq to directly determine the activity of silencers in the whole genome.

View Article and Find Full Text PDF

T cell activation is accompanied by extensive changes in epigenome. However, the high-ordered chromatin organization underpinning CD8 T cell activation is not fully known. Here, we show extensive changes in the three-dimensional genome during CD8 T cell activation, associated with changes in gene transcription.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!