Stable-isotope probing is a method used in microbial ecology that provides a means by which specific functional groups of organisms that incorporate particular substrates are identified without the prerequisite of cultivation. Stable-isotope-labeled carbon (13C) or nitrogen (15N) sources are assimilated into microbial biomass of environmental samples. Separation and molecular analysis of labeled nucleic acids (DNA or RNA) reveals phylogenetic and functional information about the microorganisms responsible for the metabolism of a particular substrate. Here, we highlight general guidelines for incubating environmental samples with labeled substrate and provide a detailed protocol for separating labeled DNA from unlabeled community DNA. The protocol includes a modification of existing published methods, which maximizes the recovery of labeled DNA from CsCl gradients. The separation of DNA and retrieval of unlabeled and labeled fractions can be performed in 4-5 days, with much of the time being committed to the ultracentrifugation step.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nprot.2007.109 | DOI Listing |
Anal Bioanal Chem
January 2025
School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
Matrix effects pose a significant challenge in food analysis for the quantitative analysis of complex food samples. Herein, a novel magnetic covalent organic framework nanocomposite and the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction-based stable isotope labeling (SIL) method were presented for highly selective and sensitive detection of steroid hormones in food samples using HPLC-MS/MS. The nanocomposite, FeO@TAPB-COF, with a core-shell structure exhibited high adsorption capacities for steroid hormones.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA.
Unlabelled: Soil microbial communities play crucial roles in nutrient cycling and can help retain nitrogen in agricultural soils. Quantitative stable isotope probing (qSIP) is a useful method for investigating taxon-specific microbial growth and utilization of specific nutrients, such as nitrogen (N). Typically, qSIP is performed in a highly controlled lab setting, so the field relevance of lab qSIP studies remains unknown.
View Article and Find Full Text PDFEcology
January 2025
Center for Ecosystem Science and Society, Department of Biology, Northern Arizona University, Flagstaff, Arizona, USA.
Fungi play a crucial role in aquatic leaf litter decomposition. Aquatic fungi have long been thought to spend the majority of their lives in the water. Here, we explore the possibility of an amphibious life cycle, where phyllosphere fungi spend part of their life cycle in aquatic systems.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550.
In soils, the first rain after a prolonged dry period represents a major pulse event impacting soil microbial community function, yet we lack a full understanding of the genomic traits associated with the microbial response to rewetting. Genomic traits such as codon usage bias and genome size have been linked to bacterial growth in soils-however, often through measurements in culture. Here, we used metagenome-assembled genomes (MAGs) with O-water stable isotope probing and metatranscriptomics to track genomic traits associated with growth and transcription of soil microorganisms over one week following rewetting of a grassland soil.
View Article and Find Full Text PDFiScience
December 2024
Department of Molecular Environmental Biotechnology, Helmholtz-Centre for Environmental Research - UFZ, 04318 Leipzig, Saxony, Germany.
Protein-based stable isotope probing (protein-SIP) can link microbial taxa to substrate assimilation. Traditionally, protein-SIP requires a sample-specific metagenome-derived database for samples with unknown composition. Here, we describe GroEL-prototyping-based stable isotope probing (GroEL-SIP), that uses GroEL as a taxonomic marker protein to identify bacterial taxa (GroEL-proteotyping) coupled to SIP directly linking identified taxa to substrate consumption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!