Purpose: To create and test methods of extracting efficiency data from recordings of simulated renal stent procedures.
Materials And Methods: Task analysis was performed and used to design a standardized testing protocol. Five experienced angiographers then performed 16 renal stent simulations using the Simbionix AngioMentor angiographic simulator. Audio and video recordings of these simulations were captured from multiple vantage points. The recordings were synchronized and compiled. A series of efficiency metrics (procedure time, contrast volume, and tool use) were then extracted from the recordings. The intraobserver and interobserver variability of these individual metrics was also assessed. The metrics were converted to costs and aggregated to determine the fixed and variable costs of a procedure segment or the entire procedure.
Results: Task analysis and pilot testing led to a standardized testing protocol suitable for performance assessment. Task analysis also identified seven checkpoints that divided the renal stent simulations into six segments. Efficiency metrics for these different segments were extracted from the recordings and showed excellent intra- and interobserver correlations. Analysis of the individual and aggregated efficiency metrics demonstrated large differences between segments as well as between different angiographers. These differences persisted when efficiency was expressed as either total or variable costs.
Conclusions: Task analysis facilitated both protocol development and data analysis. Efficiency metrics were readily extracted from recordings of simulated procedures. Aggregating the metrics and dividing the procedure into segments revealed potential insights that could be easily overlooked because the simulator currently does not attempt to aggregate the metrics and only provides data derived from the entire procedure. The data indicate that analysis of simulated angiographic procedures will be a powerful method of assessing performance in interventional radiology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jvir.2007.01.006 | DOI Listing |
JAMIA Open
February 2025
Hasso Plattner Institute for Digital Engineering, University of Potsdam, Potsdam 14482, Germany.
Objective: To improve performance of medical entity normalization across many languages, especially when fewer language resources are available compared to English.
Materials And Methods: We propose xMEN, a modular system for cross-lingual (x) medical entity normalization (MEN), accommodating both low- and high-resource scenarios. To account for the scarcity of aliases for many target languages and terminologies, we leverage multilingual aliases via cross-lingual candidate generation.
Netw Neurosci
December 2024
Mental Health Service, VA San Diego Healthcare System, La Jolla, CA, 92161, USA.
Among the myriad of complications associated with traumatic brain injury (TBI), impairments in social behaviors and cognition have emerged as a significant area of concern. Animal models of social behavior are necessary to explore the underlying brain mechanisms contributing to chronic social impairments following brain injury. Here, we utilize large-scale brain recordings of local field potentials to identify neural signatures linked with social preference deficits following frontal brain injury.
View Article and Find Full Text PDFNetw Neurosci
December 2024
Department of Clinical Cognition Science, Clinic of Neurology at the RWTH Aachen University Faculty of Medicine, ZBMT, Aachen, Germany.
Networks in the parietal and premotor cortices enable essential human abilities regarding motor processing, including attention and tool use. Even though our knowledge on its topography has steadily increased, a detailed picture of hemisphere-specific integrating pathways is still lacking. With the help of multishell diffusion magnetic resonance imaging, probabilistic tractography, and the Graph Theory Analysis, we investigated connectivity patterns between frontal premotor and posterior parietal brain areas in healthy individuals.
View Article and Find Full Text PDFNetw Neurosci
December 2024
Computer and Information Sciences, University of Strathclyde, Glasgow, UK.
Measuring transient functional connectivity is an important challenge in electroencephalogram (EEG) research. Here, the rich potential for insightful, discriminative information of brain activity offered by high-temporal resolution is confounded by the inherent noise of the medium and the spurious nature of correlations computed over short temporal windows. We propose a methodology to overcome these problems called filter average short-term (FAST) functional connectivity.
View Article and Find Full Text PDFNetw Neurosci
December 2024
Coordinated Science Laboratory, University of Illinois, Urbana-Champaign, Urbana, USA.
A fine-grained understanding of dynamics in cortical networks is crucial to unpacking brain function. Resting-state functional magnetic resonance imaging (fMRI) gives rise to time series recordings of the activity of different brain regions, which are aperiodic and lack a base frequency. Cyclicity analysis, a novel technique robust under time reparametrizations, is effective in recovering the temporal ordering of such time series, collectively considered components of a multidimensional trajectory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!