The Na+/Ca2+ exchanger (NCX) is an important Ca2+ transport mechanism in virtually all cells in the body. There are three genes that control the expression of NCX in mammals. There are at least 16 alternatively spliced isoforms of NCX1 that target muscle and nerve and other tissues. Here we briefly discuss three remarkable regulatory issues or "conundrums" that involve the most prevalently expressed gene, NCX1. (1) How is NCX1 regulated by phosphorylation? We suggest that the macromolecular complex of NCX1 plays a critical role in the regulation of NCX. The role of the macromolecular complex and evidence supporting its existence and functional importance is presented. (2) Can there be transport block of a single "mode" of NCX1 transport by drugs or therapeutic agents? The simple answer is "no." A brief explanation is provided. (3) How can NCX1 knockout mice live? The answer is "by other compensatory regulatory mechanisms." These conundrums highlight important features in NCX1 and lay the foundation for new experiments to elucidate function and regulation of NCX1 and provide a context for investigations that seek to understand novel therapeutic agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1196/annals.1387.036 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!