Background: Alpha-conotoxins have exciting therapeutic potential based on their high selectivity and affinity for nicotinic acetylcholine receptors. The spacing between the cysteine residues in alpha-conotoxins is variable, leading to the classification of sub-families. BuIA is the only alpha-conotoxin containing a 4/4 cysteine spacing and thus it is of significant interest to examine the structure of this conotoxin.
Results: In the current study we show the native globular disulfide connectivity of BuIA displays multiple conformations in solution whereas the non-native ribbon isomer has a single well-defined conformation. Despite having multiple conformations in solution the globular form of BuIA displays activity at the nicotinic acetylcholine receptor, contrasting with the lack of activity of the structurally well-defined ribbon isomer.
Conclusion: These findings are opposite to the general trends observed for alpha-conotoxins where the native isomers have well-defined structures and the ribbon isomers are generally disordered. This study thus highlights the influence of the disulfide connectivity of BuIA on the dynamics of the three-dimensional structure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1865545 | PMC |
http://dx.doi.org/10.1186/1472-6807-7-28 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!