Previous research shows that approximately half of the coagulase-negative staphylococci (CNS) isolated from patients in the intensive care unit (ICU) at Belfast City Hospital were resistant to methicillin. The presence of this relatively high proportion of methicillin-resistance genetic material gives rise to speculation that these organisms may act as potential reservoirs of methicillin-resistance genetic material to methicillin-sensitive Staphylococcus aureus (MSSA). Mechanisms of horizontal gene transfer from PBP2a-positive CNS to MSSA, potentially transforming MSSA to MRSA, aided by electroporation-type activities such as transcutaneous electrical nerve stimulation (TENS), should be considered. Methicillin-resistant CNS (MR-CNS) isolates are collected over a two-month period from a variety of clinical specimen types, particularly wound swabs. The species of all isolates are confirmed, as well as their resistance to oxacillin by standard disc diffusion assays. In addition, MSSA isolates are collected over the same period and confirmed as PBP2a-negative. Electroporation experiments are designed to mimic the time/voltage combinations used commonly in the clinical application of TENS. No transformed MRSA were isolated and all viable S. aureus cells remained susceptible to oxacillin and PBP2a-negative. Experiments using MSSA pre-exposed to sublethal concentrations of oxacillin (0.25 microg/mL) showed no evidence of methicillin gene transfer and the generation of an MRSA. The study showed no evidence of horizontal transfer of methicillin resistance genetic material from MR-CNS to MSSA. These data support the belief that TENS and the associated time/voltage combinations used do not increase conjugational transposons or facilitate horizontal gene transfer from MR-CNS to MSSA.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09674845.2007.11732747DOI Listing

Publication Analysis

Top Keywords

gene transfer
16
horizontal gene
12
methicillin-resistance genetic
12
genetic material
12
coagulase-negative staphylococci
8
methicillin-sensitive staphylococcus
8
staphylococcus aureus
8
transcutaneous electrical
8
electrical nerve
8
nerve stimulation
8

Similar Publications

The anaerobic bacterium Clostridium cellulovorans is a promising candidate for the sustainable production of biofuels and platform chemicals due to its cellulolytic properties. However, the genomic engineering of the species is hampered because of its poor genetic accessibility and the lack of genetic tools. To overcome this limitation, a protocol for triparental conjugation was established that enables the reliable transfer of vectors for markerless chromosomal modification into C.

View Article and Find Full Text PDF

Association of estrogen and progesterone receptor polymorphisms with idiopathic thin endometrium.

Pharmacogenet Genomics

January 2025

Reproductive Medicine, Instituto Bernabeu of Fertility and Gynaecology.

The research question is as follows: Are estrogen and progesterone receptor genotypes associated with thin endometrium? We performed a prospective cohort study of 129 patients who underwent preimplantation genetic testing for aneuploidies. These patients were categorized according to endometrial thickness: >7 mm control group (n = 94) and ≤7 mm study group (n = 35). Polymorphisms in the genes ESR1 (rs9340799 and rs3138774), ESR2 (rs1256049 and rs4986938), and PGR (rs1042838) were analyzed.

View Article and Find Full Text PDF

Average nucleotide identity (ANI) is a widely used metric to estimate genetic relatedness, especially in microbial species delineation. While ANI calculation has been well optimized for bacteria and closely related viral genomes, accurate estimation of ANI below 80%, particularly in large reference data sets, has been challenging due to a lack of accurate and scalable methods. To bridge this gap, we introduce MANIAC, an efficient computational pipeline optimized for estimating ANI and alignment fraction (AF) in viral genomes with divergence around ANI of 70%.

View Article and Find Full Text PDF

Selection of initiator tRNA and start codon by mammalian mitochondrial initiation factor 3 in leaderless mRNA translation.

Nucleic Acids Res

January 2025

Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan.

The mammalian mitochondrial protein synthesis system produces 13 essential subunits of oxidative phosphorylation (OXPHOS) complexes. Translation initiation in mammalian mitochondria is characterized by the use of leaderless messenger RNAs (mRNAs) and non-AUG start codons, where the proofreading function of IF-3mt still remains elusive. Here, we developed a reconstituted mammalian mitochondrial translation system using in vitro transcribed and native mitochondrial transfer RNAs (tRNAs) to investigate IF-3mt's proofreading function.

View Article and Find Full Text PDF

Multidrug-resistant Typhimurium has emerged as a global public health concern. Asymptomatic gastrointestinal carriage is a key factor in the spread of antibiotic-resistant bacteria. However, it is challenging to obtain direct evidence of transfer of mobile genetic elements (MGEs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!