Objective: To evaluate the translocation of 5-lipoxygenase (5-LOX)) after injuries by transfection with green fluorescence protein (GFP)/5-LOX in PC12 cells.
Methods: PC12 cells were stably transfected with pEGFP-C2/5-LOX (GFP/5-LOX) or pEGFP-C2 vectors (control). After treatment with oxygen-glucose deprivation (OGD), H(2)O(2) or NMDA, GFP/5-LOX localization in the cells was observed under a fluorescence microscope. Wild-type 5-LOX was determined by immunostaining after the treatment.
Result: In the GFP/5-LOX-transfected cells, GFP/5-LOX was primarily localized in the nucleus; while in the GFP-transfected cells, GFP was localized in both the cytoplasm and nucleus. After OGD and H(2)O(2) treatments, GFP/5-LOX was translocated to the nuclear membrane in 50.6 % and 57.7% cells respectively. However, after NMDA treatment or in GFP-transfected cells, no translocation was observed. Wild-type 5-LOX was distributed in the nuclei and cytoplasm, and all the 3 treatments induced 5-LOX translocation to the nuclear membrane.
Conclusion: In the PC12 cells stably transfected with GFP/5-LOX, GFP/5-LOX is primarily distributed in the nuclei; the OGD-, H(2)O(2)- and NMDA-induced 5-LOX translocation exhibits different properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3785/j.issn.1008-9292.2007.02.002 | DOI Listing |
Phys Chem Chem Phys
December 2024
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
Proteins are some of the most important components in living organisms. When nanoparticles enter a living system, they swiftly interact with proteins to produce the so-called "protein corona", which depicts the adsorption of proteins on large nanoparticles (normally tens to hundreds of nanometers). However, the sizes of small nanoparticles (typically, fluorescent nanomaterials such as quantum dots, noble metal nanoclusters, carbon dots, ) are less than 10 nm, which are comparable or even much smaller than those of proteins.
View Article and Find Full Text PDFJ Biomed Opt
December 2024
University of Michigan, Department of Biomedical Engineering, Ann Arbor, Michigan, United States.
Significance: Alzheimer's disease (AD) is a predominant form of dementia that can lead to a decline in the quality of life and mortality. The understanding of the pathological changes requires monitoring of multiple cerebral biomarkers simultaneously with high resolution. Photoacoustic microscopy resolves single capillaries, allowing investigations into the most affected types of vessels.
View Article and Find Full Text PDFFront Neurosci
December 2024
Intramural Research Program, National Institute on Drug Abuse National Institutes of Health, Baltimore, MD, United States.
Miniature fluorescence microscopes (miniscopes) are one of the most powerful and versatile tools for recording large scale neural activity in freely moving rodents with single cell resolution. Recent advances in the design of genetically encoded calcium indicators (GECIs) allow to target distinct neuronal populations with non-overlapping emission spectral profiles. However, conventional miniscopes are limited to a single excitation, single focal plane imaging, which does not allow to compensate for chromatic aberration and image from two spectrally distinct calcium indicators.
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Division of Medical Physics and Biophysics, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, 8010, Austria.
Background: Selenium (Se) is a vital micronutrient for maintaining homeostasis in the human body. Selenium nanoparticles (SeNPs) have demonstrated improved bioavailability compared to both inorganic and organic forms of Se. Therefore, supplementing with elemental Se in its nano-form is highly promising for biomedical applications related to Se deficiency.
View Article and Find Full Text PDFInarguably, the green fluorescent protein (GFP) family is an exemplary model for protein engineering, accessing a range of unparalleled functions and utility in biology. The first variant to recognize and provide an optical output of chloride in living cells was serendipitously uncovered more than 25 years ago. Since then, researchers have actively expanded the potential of GFP indicators for chloride through site-directed and combinatorial site-saturation mutagenesis, along with chimeragenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!