In humans, well over one hundred diseases have been linked to mitochondrial dysfunction and many of these are associated with neurodegeneration. At the root of most of these diseases lay ineffectual energy production, caused either by direct or indirect disruption to components of the mitochondrial electron transport chain. It is surprising then to learn that, in the nematode Caenorhabditis elegans, a collection of mutants which share disruptions in some of the same genes that cause mitochondrial pathogenesis in humans are in fact long-lived. Recently, we resolved this paradox by showing that the C. elegans "Mit mutants" only exhibit life extension in a defined window of mitochondrial dysfunction. Similar to humans, when mitochondrial dysfunction becomes too severe these mutants also exhibit pathogenic life reduction. We have proposed that life extension in the Mit mutants occurs as a by-product of compensatory processes specifically activated to maintain mitochondrial function. We have also proposed that similar kinds of processes may act to delay the symptomatic appearance in many human mitochondrial-associated disorders. In the present report, we describe our progress in using the Mit mutants as an investigative tool to study some of the processes potentially employed by human cells to offset pathological mitochondrial dysfunction.

Download full-text PDF

Source
http://dx.doi.org/10.1002/biot.200600248DOI Listing

Publication Analysis

Top Keywords

mitochondrial dysfunction
20
mitochondrial
9
caenorhabditis elegans
8
mutants investigative
8
investigative tool
8
tool study
8
dysfunction humans
8
life extension
8
mit mutants
8
mutants
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!