Gross cytogenetic anomalies are traditionally being used as diagnostic, prognostic and therapeutic markers in the clinical management of cancer, including childhood acute lymphoblastic leukemia (ALL). Recently, it has become increasingly clear that genetic lesions driving tumorigenesis frequently occur at the submicroscopic level and, consequently, escape standard cytogenetic observations. Therefore, we profiled the genomes of 40 childhood ALLs at high resolution. We detected multiple de novo genetic lesions, including gross aneuploidies and segmental gains and losses, some of which were subtle and affected single genes. Many of these lesions involved recurrent (partially) overlapping deletions and duplications, containing various established leukemia-associated genes, such as ETV6, RUNX1 and MLL. Importantly, the most frequently affected genes were those controlling G1/S cell cycle progression (e.g. CDKN2A, CDKN1B and RB1), followed by genes associated with B-cell development. The latter group includes microdeletions of the B-lineage transcription factors PAX5, EBF, E2-2 and IKZF1 (Ikaros), as well as genes with other established roles in B-cell development, that is RAG1 and RAG2, FYN, PBEF1 or CBP/PAG. The fact that we frequently encountered multiple lesions affecting genes involved in cell cycle regulation and B-cell differentiation strongly suggests that both these processes need to be targeted independently and simultaneously to trigger ALL development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.leu.2404691 | DOI Listing |
Epilepsia
January 2025
Applied Translational Neurogenomics Group, Vlaams Instituut voor Biotechnology (VIB) Center for Molecular Neurology, VIB, Antwerp, Belgium.
Objective: This study aims to improve genetic diagnosis in childhood onset epilepsy with neurodevelopmental problems by utilizing RNA sequencing of fibroblasts to identify pathogenic variants that may be missed by exome sequencing and copy number variation analysis.
Methods: We enrolled 41 individuals with childhood onset epilepsy and neurodevelopmental problems who previously had inconclusive genetic testing. Fibroblast samples were cultured and analyzed using RNA sequencing to detect aberrant expression, aberrant splicing, and monoallelic expression using the Detection of RNA Outlier Pipeline (DROP) pipeline.
Microbiol Spectr
January 2025
Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, Brazil.
is a pathogen that causes sporadic cases and outbreaks of diarrhea. The main virulence feature of this bacterium is the attaching and effacing (AE) lesion formation on infected intestinal epithelial cells, which is characterized by the formation of pedestal-like structures that are rich in F-actin. The Brazilian 1551-2 strain can recruit F-actin using both the Nck-dependent and the Nck-independent pathways, the latter of which uses an adaptor protein named Tir-cytoskeleton coupling protein (TccP/EspF).
View Article and Find Full Text PDFFront Microbiol
January 2025
Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
Bovine viral diarrhea virus (BVDV) is the causative agent of bovine viral diarrhea, which causes significant economic loss to the global livestock industry. Despite the widespread use of inactivated BVDV vaccines, highly pathogenic strains continue to emerge. In China, regional variations in BVDV subtypes, morbidities, and symptoms, however, only the BVDV 1a subtype vaccine is currently approved.
View Article and Find Full Text PDFNeurooncol Adv
January 2025
Institute for Artificial Intelligence in Medicine, University Hospital Essen, Germany.
Background: This study aimed to develop an automated algorithm to noninvasively distinguish gliomas from other intracranial pathologies, preventing misdiagnosis and ensuring accurate analysis before further glioma assessment.
Methods: A cohort of 1280 patients with a variety of intracranial pathologies was included. It comprised 218 gliomas (mean age 54.
Clin Park Relat Disord
January 2025
Cerebrovascular Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy.
CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy) is a hereditary small vessel disease caused by mutations in the NOTCH3 gene, characterized by recurrent strokes, cognitive decline, and psychiatric symptoms. This report presents a novel NOTCH3 c.1564 T > A (p.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!