Saccades are eye movements that are used to foveate targets rapidly and accurately. Their amplitude must be adjusted continually, throughout life, to compensate for movement inaccuracies due to maturation, pathology, or aging. One possible locus for such saccade adaptation is the superior colliculus (SC), the relay for cortical commands to the premotor brain stem generator for saccades. However, previous stimulation and recording studies have disagreed as to whether saccade adaptation occurs up- or downstream of the SC. Therefore we have reexamined the behavior of SC burst neurons during saccade adaptation under conditions that were optimized to produce the biggest possible change in neuronal activity. We show that behavioral adaptation of saccade amplitude was associated with significant increases or decreases, in the number of spikes in the burst and/or changes in the shape of the movement field in 35 of 43 SC neurons tested. Of the 35, 29 had closed movement fields and 14 were classified indeterminate because the movement field could not be definitively diagnosed. Changes in the number of spikes occurred gradually during adaptation and resulted from correlated changes in burst lead and duration without consistent changes in peak burst rate. These data indicate that the great majority of SC neurons show a change in discharge in association with saccade amplitude adaptation. Based on these and previous results, we speculate that the site for saccade adaptation resides in the SC or that the SC is the final common pathway for adaptive changes that occur elsewhere in the saccade system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.01278.2006 | DOI Listing |
Prog Neurobiol
December 2024
School of Biological Sciences, Seoul National University (SNU), Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea. Electronic address:
The putamen is thought to generate habitual actions by processing value information relayed from the ventral striatum through the caudate nucleus. However, it is a question what value the putamen neurons process and whether the putamen receives serially processed value through the striatal structures. We found that neurons in the primate putamen, caudate, and ventral striatum selectively encoded flexibly updated values for adaptive behaviors with similar learning speeds, rather than stably sustained values for habit.
View Article and Find Full Text PDFSci Rep
December 2024
School of Computing, University of Leeds, Leeds, UK.
Human visual attention allows prior knowledge or expectations to influence visual processing, allocating limited computational resources to only that part of the image that are likely to behaviourally important. Here, we present an image recognition system based on biological vision that guides attention to more informative locations within a larger parent image, using a sequence of saccade-like motions. We demonstrate that at the end of the saccade sequence the system has an improved classification ability compared to the convolutional neural network (CNN) that represents the feedforward part of the model.
View Article and Find Full Text PDFDespite its prevalence in studying the causal roles of different brain circuits in cognitive processes, electrical microstimulation often results in inconsistent behavioral effects. These inconsistencies are assumed to be due to multiple mechanisms, including habituation, compensation by other brain circuits, and contralateral suppression. Considering the presence of reinforcement in most experimental paradigms, we hypothesized that interactions between reward feedback and microstimulation could contribute to inconsistencies in behavioral effects of microstimulation.
View Article and Find Full Text PDFeNeuro
November 2024
Lyon Neuroscience Research Center, Computation, Cognition and Neurophysiology (Cophy) team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Bron Cedex 69675, France
The complexity of natural environments requires highly flexible mechanisms for adaptive processing of single and multiple stimuli. Neuronal oscillations could be an ideal candidate for implementing such flexibility in neural systems. Here, we present a framework for structuring attention-guided processing of complex visual scenes in humans, based on multiplexing and phase coding schemes.
View Article and Find Full Text PDFBrain Commun
November 2024
Neurosciences and Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.
Demyelination disrupts the transmission of electrical signals in the brain and affects neurodevelopment in children with disorders such as multiple sclerosis and myelin oligodendrocyte glycoprotein-associated disorders. Although cognitive impairments are prevalent in these conditions, some children maintain cognitive function despite substantial structural injury. These findings raise an important question: in addition to the degenerative process, do compensatory neural mechanisms exist to mitigate the effects of myelin loss? We propose that a multi-dimensional approach integrating multiple neuroimaging modalities, including diffusion tensor imaging, magnetoencephalography and eye-tracking, is key to investigating this question.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!