Biogenesis of a respiratory complex is orchestrated by a single accessory protein.

J Biol Chem

Laboratoire de Chimie Bactérienne, Institut de Biologie Structurale et Microbiologie, CNRS, Université de Provence (Aix-Marseille I), Marseille cedex 09, France.

Published: June 2007

The biogenesis of respiratory complexes is a multistep process that requires finely tuned coordination of subunit assembly, metal cofactor insertion, and membrane-anchoring events. The dissimilatory nitrate reductase of the bacterial anaerobic respiratory chain is a membrane-bound heterotrimeric complex nitrate reductase A (NarGHI) carrying no less than eight redox centers. Here, we identified different stable folding assembly intermediates of the nitrate reductase complex and analyzed their redox cofactor contents using electron paramagnetic resonance spectroscopy. Upon the absence of the accessory protein NarJ, a global defect in metal incorporation was revealed. In addition to the molybdenum cofactor, we show that NarJ is required for specific insertion of the proximal iron-sulfur cluster (FS0) within the soluble nitrate reductase (NarGH) catalytic dimer. Further, we establish that NarJ ensures complete maturation of the b-type cytochrome subunit NarI by a proper timing for membrane anchoring of the NarGH complex. Our findings demonstrate that NarJ has a multifunctional role by orchestrating both the maturation and the assembly steps.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M700994200DOI Listing

Publication Analysis

Top Keywords

nitrate reductase
16
biogenesis respiratory
8
accessory protein
8
complex
4
respiratory complex
4
complex orchestrated
4
orchestrated single
4
single accessory
4
protein biogenesis
4
respiratory complexes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!