Cancer has long been known to be a disease caused by alterations in the genetic blueprint of cells. In the past decade it has become apparent that epigenetic alterations also underlie the etiology of cancer. Since epigenetic changes may be more facile to reverse than genetic lesions, much research has been invested in their characterization. Success has indeed been booked in the clinic with drugs that erase DNA methylation imprints or that target histone post-translational modifications such as lysine acetylation. However, the actual consequences of current epigenetic pharmacological intervention protocols are still poorly characterized and may be rather pleiotropic in nature. The challenge we face is therefore to define the cellular enzymes responsible for epigenetic modifications at given genes under specific conditions, so as to develop pharmacological agents that target tumorigenic epigenetic lesions while eliciting minimal unwanted side effects. Application of genome-wide analytical tools has begun to provide spatio-temporally resolved data that will be crucial to achieve this goal. Finally, the molecular mode of action of epigenetic drugs may be more intricate than initially thought, involving more than DNA and histones, since it has been reported that transcription (co)factors are themselves also targeted by histone modifying enzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biocel.2007.03.011 | DOI Listing |
Funct Integr Genomics
January 2025
School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China.
Clear cell renal cell carcinoma (ccRCC) is a highly malignant tumor characterized by a significant propensity for recurrence and metastasis. DNA methylation has emerged as a critical epigenetic mechanism with substantial utility in cancer diagnosis. In this study, multi-omics data were utilized to investigate the target genes regulated by the transcription factor MYC-associated zinc finger protein (MAZ) in ccRCC, leading to the identification of thymidine phosphorylase (TYMP) as a gene with notably elevated expression in ccRCC.
View Article and Find Full Text PDFGeroscience
January 2025
Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
Rheumatoid arthritis (RA) is an age-related chronic inflammatory disease which may include accelerated biological ageing processes in its pathogenesis. To determine if increased biological age is associated with risk of RA and/or is present once disease is established. We used DNA methylation to compare biological age (epigenetic age) of immune cells in adults at risk of RA and those with confirmed RA, including twins discordant for RA.
View Article and Find Full Text PDFJ Invest Dermatol
January 2025
Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China. Electronic address:
Melanoma is a devastating form of skin cancer characterized by a high mutational burden, limited treatment success, and dismal prognosis. Although immunotherapy and targeted therapies have significantly revolutionized melanoma treatment, the majority of patients fail to achieve durable responses, highlighting the urgent need for novel therapeutic strategies. Ferroptosis, an iron-dependent form of regulated cell death driven by the overwhelming accumulation of lipid peroxides, has emerged as a promising therapeutic approach in preclinical melanoma models.
View Article and Find Full Text PDFJ Infect Dis
January 2025
Department of clinical laboratory, The First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing University, Jiaxing, China.
J Clin Med
December 2024
Department of Endocrinology, Diabetes and Metabolic Diseases, Clinical Hospital Centre Rijeka, 51000 Rijeka, Croatia.
Autoimmune thyroid disease (AITD) is the leading cause of thyroid dysfunction globally, characterized primarily by two distinct clinical manifestations: Hashimoto's thyroiditis (HT) and Graves' disease (GD). The prevalence of AITD is approximately twice as high in women compared to men, with a particularly pronounced risk during the reproductive years. Pregnancy exerts profound effects on thyroid physiology and immune regulation due to hormonal fluctuations and immune adaptations aimed at fostering maternal-fetal tolerance, potentially triggering or exacerbating AITD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!