The development of an effective subunit vaccine against brucellosis is a research area of intense interest. The enzyme lumazine synthase from Brucella spp. (BLS) is highly immunogenic, presumably due to its decameric arrangement and remarkable stability. In this work we decided to develop a chimera with the scaffold protein BLS decorated with 10 copies of a known protective epitope derived from an outer membrane protein of 31kDa (Omp31) from Brucella spp. Vaccination of BALB/c mice with the chimera as a recombinant protein (rBLSOmp31) provided the best protection level against Brucella ovis, which was higher than the given by the co-delivery of both recombinant proteins (rBLS + rOmp31) and similar than the control vaccine Brucella melitensis strain Rev.1. Moreover rBLSOmp31 induced protection against Brucella melitensis but to a lesser degree than Rev.1. The chimera induced a strong humoral response against the inserted peptide. It also induced peptide- and BLS-specific T helper 1 and cytotoxic T responses. In conclusion, our results indicate that BLSOmp31 could be a useful candidate for the development of subunit vaccines against brucellosis since it elicits humoral, T helper and cytotoxic immune responses and protection against smooth and rough species of Brucella.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vaccine.2007.03.028 | DOI Listing |
Vaccine X
January 2025
Finlay Vaccine Institute, Av. 21 #19810, Atabey, Playa, Havana 11600, Cuba.
Background: The heterologous three-dose schedule of the protein subunit anti-COVID-19 SOBERANA®02 and SOBERANA® Plus vaccines has proved its safety, immunogenicity and efficacy in pediatric population, but durability of immunogenicity is not yet dilucidated. This study reports the safety and durability of the humoral and cellular responses in children and adolescents 5-7 months after receiving the heterologous vaccine schedule of SOBERANA® 02 and SOBERANA® Plus.
Methods: Children participating in a phase I/II clinical trial were followed-up for 5-7 months after the last dose.
Introduction: Dozens of vaccines have been approved or authorized internationally in response to the ongoing SARS-CoV-2 pandemic, covering a range of modalities and routes of delivery. For example, mucosal delivery of vaccines via the intranasal (i.n.
View Article and Find Full Text PDFJ Control Release
December 2024
John A Paulson School of Engineering & Applied Sciences, Allston, MA 02134, USA; Wyss Institute of Biologically Inspired Engineering, Boston, MA 02215, USA. Electronic address:
Despite the success of global vaccination campaigns, vaccine access in low-resource settings is an ongoing challenge. Subunit vaccines are a well-established and clinically scalable intervention, yet they have achieved limited success for poorly immunogenic antigens such as those associated with SARS-CoV-2. Delivery strategies that promote gradual release of subunit vaccines from the injection site offer the potential to improve humoral immunity by enhancing lymph node exposure, however, clinical implementation of this strategy is challenging due to poor scalability and high costs.
View Article and Find Full Text PDFBMC Infect Dis
December 2024
Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, Casablanca, 20360, Morocco.
To assess the impact of the SARS-CoV-2 booster dose on the immune response against COVID-19, we conducted a cross-sectional study in the Casablanca-Settat region of Morocco. The study included 2,802 participants from 16 provinces, all of whom had received three doses of a SARS-CoV-2 vaccine. IgG antibodies targeting the S1 RBD subunit of the SARS-CoV-2 spike protein were quantified using the SARS-CoV-2 IgG II Quant assay and measured on the Abbott Architect i2000SR instrument.
View Article and Find Full Text PDFVirology
December 2024
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Departamento de Biotecnología y Bioingeniería, Av. Instituto Politécnico Nacional 2508, Mexico City, 07360, Mexico; CINVESTAV, Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Mexico. Electronic address:
COVID-19 infections continue due to accessibility barriers to vaccines and the emergence of SARS-CoV-2 variants. An effective, safe, accessible, and broad-spectrum vaccine is still needed to control the disease. We developed a multivalent protein subunit vaccine comprising antigens designed from a non-N-glycosylated region of the receptor-binding domain of the spike protein of SARS-CoV-2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!