CD36 is a multi-ligand scavenger receptor present on the surface of a number of cells such as platelets, monocytes/macrophages, endothelial and smooth muscle cells. Monocyte/macrophage CD36 has been shown to play a critical role in the development of atherosclerotic lesions by its capacity to bind and endocytose oxidized low density lipoproteins (OxLDL), and it is implicated in the formation of foam cells. However, the significance of CD36 in atherosclerosis has recently been called into question by different studies, and therefore its exact role still needs to be clarified. The aim of this article is to carefully review the importance of CD36 as an essential component in the pathogenesis of atherosclerosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cardiores.2007.03.010DOI Listing

Publication Analysis

Top Keywords

cd36
5
cd36 macrophages
4
macrophages atherosclerosis
4
atherosclerosis cd36
4
cd36 multi-ligand
4
multi-ligand scavenger
4
scavenger receptor
4
receptor surface
4
surface number
4
number cells
4

Similar Publications

CD36 enrichment in HER2-positive mesenchymal stem cells drives therapy refractoriness in breast cancer.

J Exp Clin Cancer Res

January 2025

Microenvironment and Biomarkers of Solid Tumors Unit, Department of Experimental Oncology, Amadeolab Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Milan, Italy.

Background: Growing evidence shows that the reprogramming of fatty acid (FA) metabolism plays a key role in HER2-positive (HER2 +) breast cancer (BC) aggressiveness, therapy resistance and cancer stemness. In particular, HER2 + BC has been defined as a "lipogenic disease" due to the functional and bi-directional crosstalk occurring between HER2-mediated oncogenic signaling and FA biosynthesis via FA synthase activity. In this context, the functional role exerted by the reprogramming of CD36-mediated FA uptake in HER2 + BC poor prognosis and therapy resistance remains unclear.

View Article and Find Full Text PDF

Preparation of protein and its preventive effect on nonalcoholic fatty liver disease in mice.

Food Funct

January 2025

Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403, China.

is a valuable edible fungus with multidimensional bioactivities; however, research on protein and its beneficial effects on nonalcoholic fatty liver disease (NAFLD) have been limited. In this study, protein (MEP) with 80.59% protein content was prepared, isolated, and characterized by the complete amino acid composition.

View Article and Find Full Text PDF

Adverse cardiovascular events are emerging with the use of immune checkpoint therapies in oncology. Using datasets in the Trans-Omics for Precision Medicine program (Multi-Ethnic Study of Atherosclerosis, Jackson Heart Study [JHS], and Framingham Heart Study), we examined the association of immune checkpoint plasma proteins with each other, their associated protein network with high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C), and the association of HDL-C- and LDL-C-associated protein networks with all-cause mortality risk. Plasma levels of LAG3 and HAVCR2 showed statistically significant associations with mortality risk.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is marked by chronic hyperglycemia, gradually worsening β-cell failure, and insulin resistance. Glucotoxicity and oxidative stress cause β-cell failure by increasing reactive oxygen species (ROS) production, impairing insulin secretion, and disrupting transcription factors such as pancreatic and duodenal homeobox 1 (PDX-1) and musculoaponeurotic fibrosarcoma oncogene family A (MafA). Cluster determinant 36 (CD36), an essential glycoprotein responsible for fatty acid uptake, exacerbates oxidative stress and induces the apoptosis of β-cells under hyperglycemic conditions through pathways involving ceramide, thioredoxin-interacting protein (TXNIP), and Rac1-nicotinamide adenine dinucleotide phosphate oxidase (NOX)-mediated redoxosome formation.

View Article and Find Full Text PDF

Puerarin mitigates cognitive decline and white matter injury via CD36-Mediated microglial phagocytosis in chronic cerebral hypoperfusion.

Phytomedicine

January 2025

Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, China; Jiangxi Provincial Key Laboratory of Nervous System Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, China; JXHC Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, Jiangxi, China; Jiangxi Provincial Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330000, China. Electronic address:

Background: Chronic cerebral hypoperfusion (CCH) contributes significantly to white matter injury (WMI) and cognitive impairment, often leading to vascular dementia (VaD). Inefficient clearance of myelin debris by microglia impedes white matter repair, making microglia-mediated myelin clearance a promising therapeutic strategy for WMI. Puerarin (Pu), an isoflavonoid monomer from Pueraria lobata, is known for its neuroprotective, anti-inflammatory, and immunoregulatory properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!