Synthesis, spectroscopic, electrochemical and Pb2+-binding studies of tetrathiafulvalene acetylene derivatives.

J Org Chem

Laboratory of Organic Optoelectronic Functional Materials and Molecular Engineering, Technical Institute of Physics and Chemistry and Graduate University, Chinese Academy of Sciences, Beijing 100080, People's Republic of China.

Published: May 2007

A series of tetrathiafulvalene acetylene derivatives, [TTF-Ctriple bondC-A] [A=C6H4N(CH3)2-4 (1), C6H4OCH3-4 (2), C6H5 (3), C6H4F-4 (4), C6H4NO2-4 (5), C5H4N-2 (6), C5H4N-3 (7), and C5H4N-4 (8)], have been designed and synthesized to provide insight into the nature of the donor-acceptor interaction via a pi-conjugated triple bond. The X-ray crystal structure of [TTF-(Ctriple bondC)-C6H4OCH3-4] (2) reveals that the phenyl ring linked by acetylene is almost coplanar to the plane of TTF with a dihedral angle of 3.6 degrees. The strong intermolecular C-H...O hydrogen bonding was found to direct the molecular helical assemblies with a screw pitch of 5.148 A when viewed along the a-axis. Spectroscopic and electrochemical behaviors of the tetrathiafulvalene acetylene derivatives demonstrate that the TTF unit interacts with the electron-accepting group through the triple bond, thus leading to the intramolecular charge transfer. The pyridine-substituted TTF compounds 6-8 show remarkable sensing and coordinating properties toward Pb2+. Comparison of the spectroscopic and electrochemical properties and the calculation at the B3LYP/6-31G* level available in Gaussian 03 reveals that varying the bridged unit of the TTF-pi-A system from a double bond to a triple bond leads to positive shifts for the first and second oxidation potentials of the TTF moieties, while the extent of intramolecular charge transfer interactions through the pi-conjugated triple bond is smaller than that through the double bond.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo0622577DOI Listing

Publication Analysis

Top Keywords

triple bond
16
spectroscopic electrochemical
12
tetrathiafulvalene acetylene
12
acetylene derivatives
12
pi-conjugated triple
8
intramolecular charge
8
charge transfer
8
double bond
8
bond
6
synthesis spectroscopic
4

Similar Publications

This study investigated β-glucan with diverse conformations by using molecular dynamics simulations to analyze their conformational transitions in water. Stable conformations were docked with the Dectin-1 protein to evaluate key metrics such as favorable conformations, root-mean-square deviation, hydrogen bond interactions, and their effects on macrophage activity. Results revealed that single-chain β-1,3-glucan with a degree of polymerization (DP) of 24 forms aggregates in water, while triple-chain β-1,3-glucan with a DP of 6 tends to form double helices.

View Article and Find Full Text PDF

The Site of Protonation Affects the Dissociation of Protonated α- and β-Pinene Ions.

Rapid Commun Mass Spectrom

March 2025

Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada.

Rationale: In electrospray ionization and atmospheric pressure chemical ionization, the protonation site directly guides the ion's dissociation. But what if the site of protonation is ambiguous? In this study, we explored the unimolecular reactions of protonated α- and β-pinene ions with a combination of tandem mass spectrometry and theory. Each has multiple potential protonation sites that influence their chemistry.

View Article and Find Full Text PDF

Five new non-holostane di- and trisulfated triterpene pentaosides, conicospermiumosides A-1 (), A-2 (), A-3 (), A-1 (), and A-2 () were isolated from the Far Eastern sea cucumber Levin et Stepanov (Cucumariidae, Dendrochirotida). Twelve known glycosides found earlier in other species were also obtained and identified. The structures of new compounds were established on the basis of extensive analysis of the 1D and 2D NMR spectra, as well as by the HR-ESI-MS data.

View Article and Find Full Text PDF

Crystalline Silylene-Stabilized Diboryne and Siladiborirene.

J Am Chem Soc

December 2024

State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.

The exploration of main group compounds with multiple bonds has significantly enhanced our understanding of chemical bonding and expanded transition-metal-free bond activation and catalysis. Diborynes, characterized by a boron-boron triple bond (B≡B), represent a particularly challenging area due to boron's limited valence electrons. Here, we report the synthesis and characterization of a silylene-stabilized diboryne (), expanding the frontier of diboryne stabilization.

View Article and Find Full Text PDF

Photocatalytic nitrogen (N2) fixation over semiconductors has always suffered from poor conversion efficiency owing to weak N2 adsorption and the difficulty of N≡N triple bond dissociation. Herein, a Co single-atom catalyst (SAC) model with a C-defect-evoked CoP4 distorted configuration was fabricated using a selective phosphidation strategy, wherein P-doping and C defects co-regulate the local electronic structure of Co sites. Comprehensive experiments and theoretical calculations revealed that the distorted CoP4 configuration caused a strong charge redistribution between the Co atoms and adjacent C atoms, minimizing their electronegativity difference.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!