The adsorption of glycine and l-cysteine on Si(111)-7 x 7 was investigated using high-resolution electron energy loss spectroscopy (HREELS) and X-ray photoelectron spectroscopy (XPS). The observation of the characteristic vibrational modes and electronic structures of NH3+ and COO- groups for physisorbed glycine (l-cysteine) demonstrates the formation of zwitterionic species in multilayers. For chemisorbed molecules, the appearance of nu(Si-H), nu(Si-O), and nu(C=Omicron) and the absence of nu(O-H) clearly indicate that glycine and l-cysteine dissociate to produce monodentate carboxylate adducts on Si(111)-7 x 7. XPS results further verified the coexistence of two chemisorption states for each amino acid, corresponding to a Si-NH-CH2-COO-Si [Si-NHCH(CH2SH)COO-Si] species with new sigma-linkages of Si-N and Si-O, and a NH2-CH2-COO-Si [NH2CH(CH2SH)COO-Si] product through the cleavage of the O-H bond, respectively. Glycine/Si(111)-7 x 7 and l-cysteine/Si(111)-7 x 7 can be viewed as model systems for further modification of Si surfaces with biological molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la700305bDOI Listing

Publication Analysis

Top Keywords

glycine l-cysteine
16
l-cysteine si111-7
8
binding glycine
4
l-cysteine
4
si111-7 adsorption
4
adsorption glycine
4
si111-7 investigated
4
investigated high-resolution
4
high-resolution electron
4
electron energy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!