Encouraged by the prospect of producing an electrochemical, color-switchable red-green-blue (RGB) dye compound, we have designed, synthesized, and characterized two three-station [2]catenanes. Both are composed of macrocyclic polyethers containing three pi-electron-rich stations, which act as recognition sites for a pi-electron-deficient tetracationic cyclophane. The molecular structures of the two three-station [2]catenanes were characterized fully by mass spectrometry and 1H NMR spectroscopy. To anticipate the relative occupancies of the three stations in each [2]catenane by the cyclophane, model compounds with the same constitutions in the vicinity of the stations were synthesized. The relative ground-state populations of the three stations occupied in both [2]catenanes were estimated from the thermodynamic parameters for 1:1 complexes between all these model compounds and the cyclophane, obtained from isothermal titration calorimetry (ITC). The electrochemical and electromechanical properties of the three-station [2]catenanes were analyzed by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and spectroelectrochemistry (SEC). The first three-station [2]catenane was found to behave like a bistable system, whereas the second can be described as a quasi-tristable system.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.200600355DOI Listing

Publication Analysis

Top Keywords

three-station [2]catenanes
16
three stations
8
model compounds
8
three-station
5
[2]catenanes
5
electrochemically controllable
4
controllable tristable
4
tristable three-station
4
[2]catenanes encouraged
4
encouraged prospect
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!