Evidence indicates that failure of nuclear transfer (NT) embryos to develop normally can be attributed, at least partially, to the use of a differentiated cell nucleus as the donor karyoplast. It has been hypothesized that blastocyst production and development to term of cloned embryos may differ between population doublings (PDs) of the same cell line as a consequence of changes in DNA methylation and histone acetylation patterns during in vitro culture. The objective of this study was to determine gene expression patterns of the chromatin remodeling proteins DNA methyltransferase-1 (Dnmt1), methyl CpG binding protein-2 (MeCP2), and histone deacetyltransferse-1 (HDAC1), in addition, to measuring levels of DNA methylation and histone acetylation of bovine fibroblast cells at different PDs. Bovine fibroblast cell lines were established from four 50-day fetuses. Relative levels of Dnmt1, MeCP2, HDAC1, methylated DNA, and acetylated histone were analyzed at PDs 2, 7, 15, 30, 45, and 70. RNA levels of Dnmt1, HDAC1, and MeCP2 were examined using Q-PCR. Global levels of methylated DNA and acetylated histone were determined by incubation of fixed cells with an anti-5-methylcytidine and anti-acetyl-histone H3 antibody, respectively. Cells were labeled with a second antibody, counter-stained with propidium iodide and analyzed by flow cytometry. These data demonstrate that chromatin remodeling protein mRNAs involved in epigenetic modifications are altered during in vitro culture. Methylated DNA and acetylated histone patterns of in vitro cells change with time in culture. Subsequent use of these cells for NT will provide insight as to how these epigenetic modifications affect reprogramming.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrd.20740 | DOI Listing |
BMC Mol Cell Biol
January 2025
Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK.
Background: During the latter stages of their development, mammalian oocytes under dramatic chromatin reconfiguration, transitioning from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN) stage, and concomitant transcriptional silencing. Although the NSN-SN transition is known to be essential for developmental competence of the oocyte, less is known about the accompanying molecular changes. Here we examine the changes in the transcriptome and DNA methylation during the NSN to SN transition in mouse oocytes.
View Article and Find Full Text PDFMol Psychiatry
January 2025
Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland.
Childhood maltreatment exposure (CME) increases the risk of adverse long-term health consequences for the exposed individual. Animal studies suggest that CME may also influence the health and behaviour in the next generation offspring through CME-driven epigenetic changes in the germ line. Here we investigated the associated between early life stress on the epigenome of sperm in humans with history of CME.
View Article and Find Full Text PDFSci Rep
January 2025
Jiangxi Key Laboratory of Molecular Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China.
SMAD3, a protein-coding gene, assumes a pivotal role within the transforming growth factor-beta (TGF-β) signaling pathway. Notably, aberrant SMAD3 expression has been linked to various malignancies. Nevertheless, an extensive examination of the comprehensive pan-cancer impact on SMAD3's diagnostic, prognostic, and immunological predictive utility has yet to be undertaken.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
We have developed the regionalpcs method, an approach for summarizing gene-level methylation. regionalpcs addresses the challenge of deciphering complex epigenetic mechanisms in diseases like Alzheimer's disease. In contrast to averaging, regionalpcs uses principal components analysis to capture complex methylation patterns across gene regions.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA. Electronic address:
Autosomal dominant polycystic kidney disease (ADPKD) is the fourth leading cause of end-stage renal disease, contributing substantially to patient morbidity, mortality, and healthcare system strain. Emerging research highlights a pivotal role of epigenetics in ADPKD's pathophysiology, where mechanisms like DNA methylation, histone modifications, and non-coding RNA regulation significantly impact disease onset and progression. These epigenetic factors influence gene expression and regulate key processes involved in cyst formation and expansion, fibrosis, and inflammatory infiltration, thus accelerating ADPKD progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!