Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Personal exposure to PM(2.5) and PM(1), together with indoor and residential outdoor levels, was measured in the general adult population (30 subjects, 23-51 years of age) of Gothenburg, Sweden. Simultaneously, urban background concentrations of PM(2.5) were monitored with an EPA WINS impactor. The 24-h samples were gravimetrically analyzed for mass concentration and black smoke (BS) using a smokestain reflectometer. Median levels of PM(2.5) were 8.4 microg/m(3) (personal), 8.6 microg/m(3) (indoor), 6.4 microg/m(3) (residential outdoor), and 5.6 microg/m(3) (urban background). Personal exposure to PM(1) was 5.4 microg/m(3), while PM(1) indoor and outdoor levels were 6.2 and 5.2 microg/m(3), respectively. In non-smokers, personal exposure to PM(2.5) was significantly higher than were residential outdoor levels. BS absorption coefficients were fairly similar for all microenvironments (0.4-0.5 10(-5) m(-1)). Personal exposure to particulate matter (PM) and BS was well correlated with indoor levels, and there was an acceptable agreement between personal exposure and urban background concentrations for PM(2.5) and BS(2.5) (r(s)=0.61 and 0.65, respectively). PM(1) made up a considerable amount (70-80%) of PM(2.5) in all microenvironments. Levels of BS were higher outdoors than indoors and higher during the fall compared with spring. The correlations between particle mass and BS for both PM(2.5) vs. BS(2.5) and PM(1) versus BS(1) were weak for all microenvironments including personal exposure. The urban background station provided a good estimate of residential outdoor levels of PM(2.5) and BS(2.5) within the city (r(s)=0.90 and 0.77, respectively). Outdoor levels were considerably affected by long-range transported air pollution, which was not found for personal exposure or indoor levels. The within-individual (day-to-day) variability dominated for personal exposure to both PM(2.5) and BS(2.5) in non-smokers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.jes.7500562 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!