Background: Contagious bovine pleuropneumonia (CBPP) caused by Mycoplasma mycoides subsp. mycoides small-colony type (SC) is among the most serious threats for livestock producers in Africa. Glycerol metabolism-associated H2O2 production seems to play a crucial role in virulence of this mycoplasma. A wide number of attenuated strains of M. mycoides subsp. mycoides SC are currently used in Africa as live vaccines. Glycerol metabolism is not affected in these vaccine strains and therefore it does not seem to be the determinant of their attenuation. A non-synonymous single nucleotide polymorphism (SNP) in the bgl gene coding for the 6-phospho-beta-glucosidase (Bgl) has been described recently. The SNP differentiates virulent African strains isolated from outbreaks with severe CBPP, which express the Bgl isoform Val204, from strains to be considered less virulent isolated from CBPP outbreaks with low mortality and vaccine strains, which express the Bgl isoform Ala204.

Results: Strains of M. mycoides subsp. mycoides SC considered virulent and possessing the Bgl isoform Val204, but not strains with the Bgl isoform Ala204, do trigger elevated levels of damage to embryonic bovine lung (EBL) cells upon incubation with the disaccharides (i.e., beta-D-glucosides) sucrose and lactose. However, strains expressing the Bgl isoform Val204 show a lower hydrolysing activity on the chromogenic substrate p-nitrophenyl-beta-D-glucopyranoside (pNPbG) when compared to strains that possess the Bgl isoform Ala204. Defective activity of Bgl in M. mycoides subsp. mycoides SC does not lead to H2O2 production. Rather, the viability during addition of beta-D-glucosides in medium-free buffers is higher for strains harbouring the Bgl isoform Val204 than for those with the isoform Ala204.

Conclusion: Our results indicate that the studied SNP in the bgl gene is one possible cause of the difference in bacterial virulence among strains of M. mycoides subsp. mycoides SC. Bgl does not act as a direct virulence factor, but strains possessing the Bgl isoform Val204 with low hydrolysing activity are more prone to survive in environments that contain high levels of beta-D-glucosides, thus contributing in some extent to mycoplasmaemia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1855930PMC
http://dx.doi.org/10.1186/1471-2180-7-31DOI Listing

Publication Analysis

Top Keywords

bgl isoform
32
mycoides subsp
24
subsp mycoides
24
isoform val204
20
bgl
13
mycoides
12
strains
12
strains mycoides
12
isoform
9
mycoplasma mycoides
8

Similar Publications

Introduction: Although mouse models of Alzheimer's disease (AD) have increased our understanding of the molecular basis of the disease, none of those models represent late-onset Alzheimer's Disease which accounts for >90% of AD cases, and no therapeutics developed in the mouse (with the possible exceptions of aduhelm/aducanumab and gantenerumab) have succeeded in preventing or reversing the disease. This technology has allowed much progress in understanding the molecular basis of AD. To further enhance our understanding, we used wild-type rabbit (with a nearly identical amino acid sequence for amyloid as in humans) to model LOAD by stressing risk factors including age, hypercholesterolemia, and elevated blood glucose levels (BGLs), upon an ε3-like isoform of apolipoprotein.

View Article and Find Full Text PDF

Background: Dopamine D receptor agonists, bromocriptine and cabergoline, are notable medications in the treatment of Parkinsonism, hyperprolactinemia, and hyperglycemia. An affiliation was found between the initiation of myocardial injury ailment and long term treatment with dopamine D agonist drugs identified with the partial activation of 5-hydroxytryptamine receptor 2 A (5-HT2A). The investigation aimed to examine the activity of sarpogrelate (a 5-HT2A receptor blocker) in reducing myocardial injury prompted by extended haul utilisation of D receptor agonists in rats with alloxan-induced diabetes.

View Article and Find Full Text PDF

Human SHC-transforming protein 1 and its isoforms p66shc: A novel marker for prediabetes.

J Diabetes Investig

October 2021

Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates.

Aims: Prediabetes is a multifactorial condition. Current guidelines for diabetes screening recommend either the use of glycated hemoglobin (HbA1c), or blood glucose level (BGL). This research aimed to identify if p66shc a component of the Human SHC-Transforming Protein 1 (Shc1), a mitochondrial associated oxidative stress biomarker, is significantly altered in patients with elevated BGL.

View Article and Find Full Text PDF

Quantification of the Genetic Expression of bgl-A, bgl, and CspA and Enzymatic Characterization of β-Glucosidases from Shewanella sp. G5.

Mar Biotechnol (NY)

June 2016

Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta (INIQUI - CONICET-UNSa), Av. Bolivia 5150, 4400, Salta, Argentina.

Shewanella sp. G5, a psychrotolerant marine bacterium, has a cold-shock protein (CspA) and three β-glucosidases, two of which were classified in the glycosyl hydrolase families 1 and 3 and are encoded by bgl-A and bgl genes, respectively. Shewanella sp.

View Article and Find Full Text PDF

Glycosylation variants of a β-glucosidase secreted by a Taiwanese fungus, Chaetomella raphigera, exhibit variant-specific catalytic and biochemical properties.

PLoS One

May 2015

Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America; Agricultural Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan, Republic of China; Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan, Republic of China; Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China.

Cellulosic biomass is an abundant and promising energy source. To make cellulosic biofuels competitive against conventional fuels, conversion of rigid plant materials into sugars must become efficient and cost-effective. During cellulose degradation, cellulolytic enzymes generate cellobiose (β-(1→4)-glucose dimer) molecules, which in turn inhibit such enzymes by negative feedback.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!