Cyclization of the N-terminal glutamine residue to pyroglutamic acid in onconase, an anti-cancer chemotherapeutic agent, increases the activity and stability of the protein. Here, we examine the correlated effects of the folding/unfolding process and the formation of this N-terminal pyroglutamic acid. The results in this study indicate that cyclization of the N-terminal glutamine has no significant effect on the rate of either reductive unfolding or oxidative folding of the protein. Both the cyclized and uncyclized proteins seem to follow the same oxidative folding pathways; however, cyclization altered the relative flux of the protein in these two pathways by increasing the rate of formation of a kinetically trapped intermediate. Glutaminyl cyclase (QC) catalyzed the cyclization of the unfolded, reduced protein but had no effect on the disulfide-intact, uncyclized, folded protein. The structured intermediates of uncyclized onconase were also resistant to QC catalysis, consistent with their having a native-like fold. These observations suggest that, in vivo, cyclization takes place during the initial stages of oxidative folding, specifically, before the formation of structured intermediates. The competition between oxidative folding and QC-mediated cyclization suggests that QC-catalyzed cyclization of the N-terminal glutamine in onconase occurs in the endoplasmic reticulum, probably co-translationally.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2535829 | PMC |
http://dx.doi.org/10.1021/bi602495a | DOI Listing |
World J Gastroenterol
January 2025
Department of Internal Medicine, Asahikawa Medical University, Asahikawa 078-8510, Hokkaido, Japan.
The challenge of effectively eliminating air during gastrointestinal endoscopy using ultrasound techniques is apparent. This difficulty arises from the intricacies of removing concealed air within the folds of the gastrointestinal tract, resulting in artifacts and compromised visualization. In addition, the overlap of folds with lesions can obscure their depth and size, presenting challenges for an accurate assessment.
View Article and Find Full Text PDFActa Naturae
January 2024
St Petersburg University, St. Petersburg, 199034 Russian Federation.
Living organisms exhibit an impressive ability to expand the basic information encoded in their genome, specifically regarding the structure and function of protein. Two basic strategies are employed to increase protein diversity and functionality: alternative mRNA splicing and post-translational protein modifications (PTMs). Enzymatic regulation is responsible for the majority of the chemical reactions occurring within living cells.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain.
Lipid metabolism plays a critical role in maintaining cellular integrity, especially within the nervous system, where lipids support neuronal structure, function, and synaptic plasticity. However, this essential metabolic pathway is highly susceptible to oxidative stress, which can lead to lipid peroxidation, a damaging process induced by reactive oxygen species. Lipid peroxidation generates by-products that disrupt many cellular functions, with a strong impact on proteostasis.
View Article and Find Full Text PDFCells
January 2025
Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA.
Heat shock proteins (HSPs) are essential molecular chaperones that protect cells by aiding in protein folding and preventing aggregation under stress conditions. Small heat shock proteins (sHSPs), which include members from HSPB1 to HSPB10, are particularly important for cellular stress responses. These proteins share a conserved α-crystallin domain (ACD) critical for their chaperone function, with flexible N- and C-terminal extensions that facilitate oligomer formation.
View Article and Find Full Text PDFInt J Physiol Pathophysiol Pharmacol
December 2024
Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University Motihari Motihari, Bihar 845401, India.
Objective: The Heat Shock Protein 70 (HSP70) family is a highly conserved group of molecular chaperones essential for maintaining cellular homeostasis. These proteins are necessary for protein folding, assembly, and degradation and involve cell recovery from stress conditions. HSP70 proteins are upregulated in response to heat shock, oxidative stress, and pathogenic infections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!