AI Article Synopsis

  • The study investigates how acid affects interactions between protein particles in milk, specifically casein micelles and serum protein complexes, using techniques like diffusing wave spectroscopy and rheology.
  • Heat treatment of proteins alters the composition and interaction behavior; heated serum proteins lead to gel formation at higher pH levels compared to unheated ones.
  • The results reveal that heated micelles can create a network with serum proteins, while unheated micelles rely on direct interactions with soluble complexes, enhancing understanding of milk coagulation mechanisms.

Article Abstract

The acid-induced interactions between different protein particles in milk (casein micelles and serum protein/kappa-casein complexes) were studied in a series of different mixtures of heated and unheated proteins using diffusing wave spectroscopy (DWS) and small deformation rheology. The measurements were made as functions of pH during acidification by addition of glucono-delta-lactone (GDL). Heat treatment (85 degrees C, 10 min) affected the composition of the serum and the reactivity of casein micellar surface based on the pH at which the casein micelles aggregated during acidification. It was observed that the gel points as defined by DWS and rheology did not always coincide. The experiments showed that all systems containing heated serum proteins gelled at a higher pH than those containing unheated serum proteins. For systems containing heated micelles, an intermediate network can be formed between heat-induced aggregates of serum proteins and kappa-casein formed at the surfaces of the micelles and dispersed as soluble complexes in the serum. This can explain the observation that DWS measurements detected aggregation of casein micelles at an earlier stage than did rheology. For systems containing unheated micelles and soluble complexes from heated milk, the results appear to be explained only by a direct interaction between soluble serum protein complexes and the casein micelles themselves, once the pH has decreased to below about 5.5. Comparison of the different systems studied gives a more complete description of the possible mechanism of interaction of the different protein materials during the acid-induced coagulation of milk-based systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf063242cDOI Listing

Publication Analysis

Top Keywords

casein micelles
20
serum proteins
12
heated unheated
8
serum
8
serum protein
8
protein complexes
8
micelles
8
systems heated
8
soluble complexes
8
casein
6

Similar Publications

Changes in Microbial Safety and Quality of High-Pressure Processed Camel Milk.

Foods

January 2025

Food Studies and Policies Section, Food Safety Department, Dubai Municipality, Dubai P.O. Box 330127, United Arab Emirates.

High-pressure processing (HPP) is used as a non-thermal approach for controlling microbial viability. The purposes of this study were to (i) establish the decimal reduction times (D-values) for pathogenic bacteria during 350 MPa HPP treatment,; (ii) evaluate the impact of 350 MPa HPP on total plate count (TPC), yeasts and molds (YM), and lactic acid bacteria (LAB) in camel milk; (iii) investigate the behavior of several spoilage-causing bacteria during storage at 4 °C and 10 °C for up to 10 d post-HPP treatment; and (iv) assess the effect of HPP on the protein degradation of camel milk. The D-values for , O157:H7, and spp.

View Article and Find Full Text PDF

Bovine milk contains four types of caseins with β-casein being one of the most abundant. Previous studies on cow milk have reported seemingly contradictory effects of β-casein on milk renneting behavior. The aim of this study was to gain a better understanding of how β-casein affects the properties and renneting behavior of casein micelles by using a model system of reassembled casein micelles (RCMs).

View Article and Find Full Text PDF

Micellar casein were constructed to improve the encapsulation efficiency of algae oil docosahexaenoic acid by transglutaminase-coupled phosphoserine peptide chelating with Ca.

Int J Biol Macromol

January 2025

College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China. Electronic address:

Micelle systems using safe food-grade biopolymers are of particular interest for the encapsulation and delivery of nutrition components. Micellar casein (MC) was assembled using transglutaminase (TGase) to couple with phosphoserine peptide, which enhance the stability of docosahexaenoic acid (DHA) from algae oil. The mechanism behind the construction of MC-phosphoserine peptide and the encapsulation of DHA was explored.

View Article and Find Full Text PDF

Dispersion stabilization of proteins by carrageenan in baked milk: A quantitative separation study.

Food Chem

January 2025

Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China,. Electronic address:

Baked milk is subjected to prolonged high-temperature processing, which often undermines its dispersion stability. While carrageenan is known to inhibit milk demixing, its role in stabilizing heat-induced protein aggregates remains inadequately understood. In this study, we isolated casein micelles (CM), whey protein-casein aggregates (WPCA), and whey protein aggregates (WPA) from baked milk through centrifugation.

View Article and Find Full Text PDF

The hydrolysis of proteins by proteases (proteolysis) plays a significant role in biology and food science. Despite the importance of proteolysis, a universal quantitative model of this phenomenon has not yet been created. This review considers approaches to modeling proteolysis in a batch reactor that take into account differences in the hydrolysis of the individual peptide bonds, as well as the limited accessibility (masking) for the enzymes of some hydrolysis sites in the protein substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!