The present study was undertaken to determine whether the mice depleted of alphabeta or gammadelta T cells show resistance to acute polymicrobial sepsis caused by cecal ligation and puncture (CLP). T-cell receptor beta knockout (betaTCRKO) and T-cell receptor delta knockout (deltaTCRKO) mice were used. An additional group of mice was treated with an antibody against the alphabeta T-cell receptor to induce alphabeta T-cell depletion; a subset of alphabeta T cell-deficient mice was also treated with anti-asialoGM1 to deplete natural killer (NK) cells. The mice underwent CLP and were monitored for survival, temperature, acid-base balance, bacterial counts, and cytokine production. The betaTCRKO mice and the wild-type mice treated with anti-beta T-cell receptor (anti-TCRbeta) antibody showed improved survival after CLP compared with wild-type mice. The treatment of alphabeta T cell-deficient mice with anti-asialoGM1further improved survival after CLP, especially when the mice were treated with imipenem. The improved survival observed in alphabeta T cell-deficient mice was associated with less hypothermia, improved acid-base balance, and decreased production of the proinflammatory cytokines interleukin (IL) 6 and macrophage inflammatory protein (MIP) 2. Compared with wild-type controls, the overall survival was not improved in deltaTCRKO mice. The concentrations of IL-6 and MIP-2 in plasma and cytokine mRNA expression in tissues were not significantly different between wild-type and deltaTCRKO mice. These studies indicate that mice depleted of alphabeta but not of gammadelta T cells are resistant to mortality in an acutely lethal model of CLP. The depletion of NK cells caused further survival benefit in alphabeta T cell-deficient mice. These findings suggest that alphabeta T and NK cells mediate or facilitate CLP-induced inflammatory injury.

Download full-text PDF

Source
http://dx.doi.org/10.1097/SHK.0b013e31802b5d9fDOI Listing

Publication Analysis

Top Keywords

mice
16
t-cell receptor
16
mice treated
16
alphabeta cell-deficient
16
cell-deficient mice
16
mice depleted
12
depleted alphabeta
12
alphabeta gammadelta
12
gammadelta cells
12
deltatcrko mice
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!