Lung resistance-related protein (LRP) is an integral part of the multidrug resistance (MDR) phenotype involved in cell resistance toward xenobiotics or chemotherapy. The aim of this study was to compare the intracellular localization and cell expression of LRP in normal bronchial cells and their tumoral counterparts from non-small cell lung cancer (NSCLC). LRP expression was also investigated concurrently with DNA ploidy and chromosome 16 (lrp gene locus) aberrations. Confocal microscopy showed that LRP localization was exclusively intracytoplasmic regardless of the cell type and was never observed in the nuclear pore complex. Flow cytometry demonstrated a similar level of LRP expression in normal bronchial cells and in cancer cells from NSCLC samples. FISH analysis, performed to evaluate the number of chromosome 16 and lrp loci, demonstrated a significant gain of chromosome 16 in DNA aneuploid tumors. Furthermore, we did not find any link between LRP expression and DNA ploidy status or chromosome 16 number. These results suggest that LRP expression observed in NSCLC, maintained through the carcinogenesis process of respiratory cells, is not altered by the increased number of copies of chromosome 16 and probably controlled by mechanisms different from those of MRP1 expression, whereas both proteins are associated with the MDR phenotype.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1369/jhc.7A7176.2007 | DOI Listing |
mSphere
December 2024
Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
The toxigenic strains secrete tilymicin and tilivalline enterotoxins, which cause antibiotic-associated hemorrhagic colitis. Both enterotoxins are non-ribosomal peptides synthesized by enzymes encoded in two divergent operons clustered in a pathogenicity island. The transcriptional regulator Lrp (eucine-responsive egulatory rotein) controls the expression of several bacterial genes involved in virulence.
View Article and Find Full Text PDFJ Nutr Health Aging
December 2024
Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, United States.
Background: Aging is associated with multiple neurodegenerative conditions that severely limit quality of life and can shorten lifespan. Studies in rodents indicate that in addition to extending lifespan, the ketogenic diet (KD) improves cognitive function in aged animals, yet long term adherence to KD in Humans is poor.
Objectives: To broadly investigate what mechanisms might be activated in the brain in response to ketogenic diet.
Mol Plant Pathol
December 2024
School of Life Sciences, Anhui Agricultural University, Hefei, China.
Streptomyces scabies is a well-researched plant pathogen belonging to the genus Streptomyces. Its virulence is linked to the production of the secondary metabolite thaxtomin A, which is tightly regulated at the transcriptional level. The leucine-responsive regulatory protein (Lrp) family is conserved in prokaryotes and is involved in various crucial biological processes.
View Article and Find Full Text PDFElife
November 2024
Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France.
The lateral wall of the mouse subventricular zone harbors neural stem cells (NSC, B cells) which generate proliferating transient-amplifying progenitors (TAP, C cells) that ultimately give rise to neuroblasts (NB, A cells). Molecular profiling at the single-cell level struggles to distinguish these different cell types. Here, we combined transcriptome analyses of FACS-sorted cells and single-cell RNAseq to demonstrate the existence of an abundant, clonogenic and multipotent population of immature neuroblasts (iNB cells) at the transition between TAP and migrating NB (mNB).
View Article and Find Full Text PDFMol Omics
November 2024
Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, USA.
Obstructive sleep apnea (OSA) is characterized by intermittent hypoxic environments at the cellular level and is an independent risk factor for the development of cardiovascular disease. Endothelial cell (EC) dysfunction precedes the development of cardiovascular disease; however, the mechanisms by which ECs respond to these intermittent hypoxic events are poorly understood. To better understand EC responses to hypoxia, we examined the effects of sustained hypoxia (SH) and intermittent hypoxia (IH) on the activation of HIF-1α in ECs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!