Lung resistance-related protein (LRP) is an integral part of the multidrug resistance (MDR) phenotype involved in cell resistance toward xenobiotics or chemotherapy. The aim of this study was to compare the intracellular localization and cell expression of LRP in normal bronchial cells and their tumoral counterparts from non-small cell lung cancer (NSCLC). LRP expression was also investigated concurrently with DNA ploidy and chromosome 16 (lrp gene locus) aberrations. Confocal microscopy showed that LRP localization was exclusively intracytoplasmic regardless of the cell type and was never observed in the nuclear pore complex. Flow cytometry demonstrated a similar level of LRP expression in normal bronchial cells and in cancer cells from NSCLC samples. FISH analysis, performed to evaluate the number of chromosome 16 and lrp loci, demonstrated a significant gain of chromosome 16 in DNA aneuploid tumors. Furthermore, we did not find any link between LRP expression and DNA ploidy status or chromosome 16 number. These results suggest that LRP expression observed in NSCLC, maintained through the carcinogenesis process of respiratory cells, is not altered by the increased number of copies of chromosome 16 and probably controlled by mechanisms different from those of MRP1 expression, whereas both proteins are associated with the MDR phenotype.

Download full-text PDF

Source
http://dx.doi.org/10.1369/jhc.7A7176.2007DOI Listing

Publication Analysis

Top Keywords

lrp expression
16
lrp
10
cell expression
8
lung resistance-related
8
resistance-related protein
8
protein lrp
8
lrp normal
8
respiratory cells
8
mdr phenotype
8
normal bronchial
8

Similar Publications

The transcriptional regulator Lrp activates the expression of genes involved in the biosynthesis of tilimycin and tilivalline enterotoxins in .

mSphere

December 2024

Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.

The toxigenic strains secrete tilymicin and tilivalline enterotoxins, which cause antibiotic-associated hemorrhagic colitis. Both enterotoxins are non-ribosomal peptides synthesized by enzymes encoded in two divergent operons clustered in a pathogenicity island. The transcriptional regulator Lrp (eucine-responsive egulatory rotein) controls the expression of several bacterial genes involved in virulence.

View Article and Find Full Text PDF

Background: Aging is associated with multiple neurodegenerative conditions that severely limit quality of life and can shorten lifespan. Studies in rodents indicate that in addition to extending lifespan, the ketogenic diet (KD) improves cognitive function in aged animals, yet long term adherence to KD in Humans is poor.

Objectives: To broadly investigate what mechanisms might be activated in the brain in response to ketogenic diet.

View Article and Find Full Text PDF

Streptomyces scabies is a well-researched plant pathogen belonging to the genus Streptomyces. Its virulence is linked to the production of the secondary metabolite thaxtomin A, which is tightly regulated at the transcriptional level. The leucine-responsive regulatory protein (Lrp) family is conserved in prokaryotes and is involved in various crucial biological processes.

View Article and Find Full Text PDF

Switching of RNA splicing regulators in immature neuroblasts during adult neurogenesis.

Elife

November 2024

Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France.

The lateral wall of the mouse subventricular zone harbors neural stem cells (NSC, B cells) which generate proliferating transient-amplifying progenitors (TAP, C cells) that ultimately give rise to neuroblasts (NB, A cells). Molecular profiling at the single-cell level struggles to distinguish these different cell types. Here, we combined transcriptome analyses of FACS-sorted cells and single-cell RNAseq to demonstrate the existence of an abundant, clonogenic and multipotent population of immature neuroblasts (iNB cells) at the transition between TAP and migrating NB (mNB).

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA) is characterized by intermittent hypoxic environments at the cellular level and is an independent risk factor for the development of cardiovascular disease. Endothelial cell (EC) dysfunction precedes the development of cardiovascular disease; however, the mechanisms by which ECs respond to these intermittent hypoxic events are poorly understood. To better understand EC responses to hypoxia, we examined the effects of sustained hypoxia (SH) and intermittent hypoxia (IH) on the activation of HIF-1α in ECs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!