Myosin motors are central to diverse cellular processes in eukaryotes. Homologues of the myosin chaperone UNC-45 have been implicated in the assembly and function of myosin-containing structures in organisms from fungi to humans. In muscle, the assembly of sarcomeric myosin is regulated to produce stable, uniform thick filaments. Loss-of-function mutations in Caenorhabditis elegans UNC-45 lead to decreased muscle myosin accumulation and defective thick filament assembly, resulting in paralyzed animals. We report that transgenic worms overexpressing UNC-45 also display defects in myosin assembly, with decreased myosin content and a mild paralysis phenotype. We find that the reduced myosin accumulation is the result of degradation through the ubiquitin/proteasome system. Partial proteasome inhibition is able to restore myosin protein and worm motility to nearly wild-type levels. These findings suggest a mechanism in which UNC-45-related proteins may contribute to the degradation of myosin in conditions such as heart failure and muscle wasting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2064129 | PMC |
http://dx.doi.org/10.1083/jcb.200607084 | DOI Listing |
This study aimed to elucidate the impact of advanced glycation end products (AGEs) and glucose shock on cardiomyocyte viability, gene expression, cardiac biomarkers, and cardiac contractility. Firstly, AGEs were generated in-house, and their concentration was confirmed using absorbance measurements. AC16 cardiomyocytes were then exposed to varying doses of AGEs, resulting in dose-dependent decreases in cell viability.
View Article and Find Full Text PDFBackground: Germline haplodeficiency (RHD) is associated with thrombocytopenia, platelet dysfunction and predisposition to myeloid malignancies. Platelet expression profiling of a RHD patient showed decreased encoding for the A subunit of factor XIII, a transglutaminase that cross-links fibrin and induces clot stabilization. FXIII-A is synthesized by hematopoietic cells, megakaryocytes and monocytes.
View Article and Find Full Text PDFJ Exp Biol
January 2025
Department of Biology, Western University, London, Ontario, Canada.
The pectoralis muscle in birds is important for flight and thermogenesis. In migratory songbirds this muscle exhibits seasonal flexibility in size, but whether this flexibility reflects changes in muscle fiber type has not been well documented. We investigated how seasonal changes in photoperiod affected pectoralis muscle fiber type and metabolic enzymes, comparing among three closely-related sparrow species: two seasonal migrants and one year-round, temperate climate resident.
View Article and Find Full Text PDFEquine Vet J
January 2025
Setor de Patologia Veterinária, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
Background: In horses, systemic calcinosis is a rare syndrome characterised by muscle lesion associated with the mineralisation of large muscle groups or other organs, in the absence of an alternative cause for the calcification, such as toxic, enzootic or metabolic. Molecular and histopathological aspects of the disease are still poorly elucidated.
Objectives: To describe the epidemiological, pathological and molecular aspects of systemic calcinosis in a convenience sample of six horses submitted to necropsy in the Southern and Midwestern regions of Brazil.
FASEB J
January 2025
Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!