AI Article Synopsis

Article Abstract

The A form RNA double helix can be transformed to a left-handed helix, called Z-RNA. Currently, little is known about the detailed structural features of Z-RNA or its involvement in cellular processes. The discovery that certain interferon-response proteins have domains that can stabilize Z-RNA as well as Z-DNA opens the way for the study of Z-RNA. Here, we present the 2.25 A crystal structure of the Zalpha domain of the RNA-editing enzyme ADAR1 (double-stranded RNA adenosine deaminase) complexed to a dUr(CG)(3) duplex RNA. The Z-RNA helix is associated with a unique solvent pattern that distinguishes it from the otherwise similar conformation of Z-DNA. Based on the structure, we propose a model suggesting how differences in solvation lead to two types of Z-RNA structures. The interaction of Zalpha with Z-RNA demonstrates how the interferon-induced isoform of ADAR1 could be targeted toward selected dsRNAs containing purine-pyrimidine repeats, possibly of viral origin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2082211PMC
http://dx.doi.org/10.1016/j.str.2007.03.001DOI Listing

Publication Analysis

Top Keywords

rna double
8
double helix
8
domain rna-editing
8
rna-editing enzyme
8
enzyme adar1
8
z-rna
7
left-handed rna
4
helix
4
helix bound
4
bound alpha
4

Similar Publications

Emerging Roles of TRIM56 in Antiviral Innate Immunity.

Viruses

January 2025

Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA.

The tripartite-motif protein 56 (TRIM56) is a RING-type E3 ubiquitin ligase whose functions were recently beginning to be unveiled. While the physiological role(s) of TRIM56 remains unclear, emerging evidence suggests this protein participates in host innate defense mechanisms that guard against viral infections. Interestingly, TRIM56 has been shown to pose a barrier to viruses of distinct families by utilizing its different domains.

View Article and Find Full Text PDF

The increasing challenges posed by plant viral diseases demand innovative and sustainable management strategies to minimize agricultural losses. Exogenous double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) represents a transformative approach to combat plant viral pathogens without the need for genetic transformation. This review explores the mechanisms underlying dsRNA-induced RNAi, highlighting its ability to silence specific viral genes through small interfering RNAs (siRNAs).

View Article and Find Full Text PDF

Role of miRNAs in Regulating Ascending Aortic Dilation in Bicuspid Aortic Valve Patients Operated for Aortic Stenosis.

Int J Mol Sci

January 2025

Research Direction, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14080, Mexico.

Deregulation of micro-RNAs (miRNAs) may contribute to mechanisms of injury in the bicuspid aortic valve (BAV). Our objective was to investigate the expression of miRNAs in aortic tissue from patients who underwent aortic valve replacement for aortic stenosis and its relationship with aortic dilatation. The study included 78 patients, 40 with bicuspid aortic valve (BAV) and 38 with tricuspid aortic valve (TAV).

View Article and Find Full Text PDF

The immune system and neuroinflammation are now well established in the aetiology of neurodegeneration. Previous studies of transcriptomic and gene association studies have highlighted the potential of the 2'-5' oligoadenylate synthetase 1 (OAS1) to play a role in Alzheimer's disease. OAS1 is a viral response gene, interferon-induced, dsRNA activated enzyme, which binds RNase L to degrade dsRNA, and has been associated with COVID-19 response.

View Article and Find Full Text PDF

In 2001, two enzyme-encoding genes were recognized in the fruit fly . The genetic material, labeled and , encodes ribonuclease-type enzymes with slightly diverse target substrates. The human orthologue is .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!