G protein-coupled receptor kinase 2 (GRK2) modulates G protein-coupled receptor desensitization and signaling. We previously described down-regulation of GRK2 expression in vivo in rat neonatal brain following hypoxia-ischemia. In this study, we investigated the molecular mechanisms involved in GRK2 down-regulation, using organotypic cultures of neonatal rat hippocampal slices exposed to oxygen and glucose deprivation (OGD). We observed a 40% decrease in GRK2 expression 4 h post-OGD. No changes in GRK2 protein occurred after exposure of hippocampal slices to glucose deprivation only. No significant alterations in GRK2 mRNA expression were detected, suggesting a post-transcriptional effect of OGD on GRK2 expression. Blockade of the proteasome pathway by MG132 prevented OGD-induced decrease of GRK2. It has been shown that extracellular signal-regulated kinase-dependent phosphorylation of GRK2 at Ser670 triggers its turnover via the proteasome pathway. However, despite a significant increase of pSer670-GRK2 after OGD, inhibition of the extracellular signal-regulated kinase pathway by PD98059 did neither prevent the hypoxia-ischemia-induced increase in pSer670-GRK2 nor the down-regulation of GRK2 protein. Interestingly, inhibition of phosphoinositide-3-kinase with wortmannin inhibits both OGD-induced phosphorylation of GRK2 on Ser670 and the GRK2 decrease. In conclusion, OGD-induced phosphoinositide-3-kinase-dependent phosphorylation of GRK2 on Ser670 is a novel mechanism leading to down-regulation of GRK2 protein via a proteasome-dependent pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.2007.04576.xDOI Listing

Publication Analysis

Top Keywords

down-regulation grk2
16
grk2
14
glucose deprivation
12
hippocampal slices
12
grk2 expression
12
grk2 protein
12
phosphorylation grk2
12
grk2 ser670
12
oxygen glucose
8
rat hippocampal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!