A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prognostic accuracy of an artificial neural network in patients undergoing radical cystectomy for bladder cancer: a comparison with logistic regression analysis. | LitMetric

Objective: To compare the prognostic performance of an artificial neural network (ANN) with that of standard logistic regression (LR), in patients undergoing radical cystectomy for bladder cancer.

Patients And Methods: From February 1982 to February 1994, 369 evaluable patients with non-metastatic bladder cancer had pelvic lymph node dissection and radical cystectomy for either stage Ta-T1 (any grade) tumour not responding to intravesical therapy, with or with no carcinoma in situ, or stage T2-T4 tumour. LR analysis based on 12 variables was used to identify predictors of overall 5-year survival, and the ANN model was developed to predict the same outcome. The LR analysis, based on statistically significant predictors, and the ANN model were the compared for their accuracy in predicting survival.

Results: The median age of the patients was 63 years, and overall 201 of them died. The tumour stage and nodal involvement (both P<0.001) were the only statistically independent predictors of overall 5-year survival on LR analysis. Based on these variables, LR had a sensitivity and specificity for predicting survival of 68.4% and 82.8%, respectively; corresponding values for the ANN were 62.7% and 86.1%. For LR and ANN, the positive predictive values were 78.6% and 76.2%, and the negative predictive values were 73.9% and 76.5%, respectively. The index of diagnostic accuracy was 75.9% for LR and 76.4% for ANN.

Conclusions: The ANN accurately predicted the survival of patients undergoing radical cystectomy for bladder cancer and had a prognostic performance comparable with that of LR. As ANNs are based on easy-to-use software that can identify nonlinear interactions between variables, they might become the preferred tool for predicting outcome.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1464-410X.2007.06755.xDOI Listing

Publication Analysis

Top Keywords

radical cystectomy
12
artificial neural
8
neural network
8
patients undergoing
8
undergoing radical
8
cystectomy bladder
8
bladder cancer
8
logistic regression
8
analysis based
8
ann model
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!