Sonographic diagnosis of fetal cerebral ventriculomegaly: an update.

J Matern Fetal Neonatal Med

Fetal Medicine Unit, Department of Obstetrics and Gynecology, University Medical School, Bari, Italy.

Published: January 2007

Dilatation of the fetal cerebral ventricles (ventriculomegaly) is a generic sonographic sign that is common to several pathological entities carrying different prognoses. The main causes of fetal ventriculomegaly are aqueductal stenosis, Chiari II malformation, Dandy-Walker complex, and agenesis of the corpus callosum. Ventriculomegaly is easily recognized by ultrasound by measuring the atrial width. This simple measure allows the recognition of mild forms of ventricular dilatation and is used in screening for ventriculomegaly. However, although the diagnosis of ventriculomegaly is easy, the prenatal identification of the cause of ventricular dilatation is a more difficult task. For this purpose the evaluation of the posterior fossa in association with the visualization of the corpus callosum is useful. Research into the causes of ventriculomegaly is clinically useful, since the prognosis mainly depends on the etiology and on the presence of associated abnormalities. In this article the role of prenatal sonography in determining the cause of the ventriculomegaly is reviewed, as well as the prognostic value of the prenatal sonographic findings.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14767050601036188DOI Listing

Publication Analysis

Top Keywords

fetal cerebral
8
ventriculomegaly
8
corpus callosum
8
callosum ventriculomegaly
8
ventricular dilatation
8
sonographic diagnosis
4
diagnosis fetal
4
cerebral ventriculomegaly
4
ventriculomegaly update
4
update dilatation
4

Similar Publications

This study presents the construction of a comprehensive spatiotemporal atlas of white matter tracts in the fetal brain for every gestational week between 23 and 36 wk using diffusion MRI (dMRI). Our research leverages data collected from fetal MRI scans, capturing the dynamic changes in the brain's architecture and microstructure during this critical period. The atlas includes 60 distinct white matter tracts, including commissural, projection, and association fibers.

View Article and Find Full Text PDF

Objective: The natural history of cephaloceles is not well understood. The goal of this study was to better understand the natural history of fetal cephaloceles from prenatal diagnosis to the postnatal period.

Methods: Between January 2013 and April 2023, all patients evaluated with a cephalocele at the Center for Fetal Diagnosis and Treatment were identified.

View Article and Find Full Text PDF

Potassium Current Signature of Neuronal/Glial Progenitors in Amniotic Fluid Stem Cells.

Cells

January 2025

Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell'Elce di Sotto 8, 06123 Perugia, Italy.

Article Synopsis
  • Amniotic fluid contains stem cells (AF-SCs) that have potential uses in regenerative medicine for treating various injuries and diseases.
  • When exposed to basic Fibroblast Growth Factor (bFGF), AF-SCs show the ability to survive and migrate in a rat brain model, resembling characteristics of neuronal/glial progenitor cells.
  • The study employs electrophysiological techniques to identify specific potassium currents in AF-SCs and confirms that histamine can influence calcium dynamics and potassium current activation in these cells.
View Article and Find Full Text PDF

The human brain connectome is characterized by the duality of highly modular structure and efficient integration, supporting information processing. Newborns with congenital heart disease (CHD), prematurity, or spina bifida aperta (SBA) constitute a population at risk for altered brain development and developmental delay (DD). We hypothesize that, independent of etiology, alterations of connectomic organization reflect neural circuitry impairments in cognitive DD.

View Article and Find Full Text PDF

The placenta is a fetal endocrine organ that secretes many neuroactive factors, including steroids, that play critical roles in brain development. The study of the placenta-brain axis and the links between placental function and brain development represents an emerging research area dubbed "neuroplacentology." The placenta drives many circulating fetal steroids to very high levels during gestation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!