Chiral supramolecular assemblies of a squaraine dye in solution and thin films: concentration-, temperature-, and solvent-induced chirality inversion.

Chemistry

Photosciences and Photonics, Chemical Sciences and Technology Division, Regional Research Laboratory (CSIR), Trivandrum - 695019, India.

Published: September 2007

We prepared novel cholesterol-appended squaraine dye 1 and model squaraine dye 2 and investigated their aggregation behavior in solution and thin films using photophysical, chiroptical, and microscopic techniques. Investigations on the dependence of aggregation on solvent composition (good/poor, CHCl3/CH3CN) demonstrated that squaraine dye 1 forms two novel H-type chiral supramolecular assemblies with opposite chirality at different good/poor solvent compositions. Model compound 2 formed J-type achiral assemblies under similar conditions. The supramolecular assembly of 1 observed at lower fractions of the poor solvent could be assigned to the thermodynamically stable form, while a kinetically controlled assembly is formed at higher fractions of the poor solvent. This assignment is evidenced by temperature- and concentration-dependent experiments. With increasing temperature, the chirality of the kinetically controlled aggregate was lost and, on cooling, the aggregate with the opposite chirality was formed. On further heating and cooling the aggregates thus formed resulted in no significant changes in chirality, that is they are thermodynamically stable. Similarly, at lower concentrations, the thermodynamically stable form exists, but at higher concentration aggregation was found to proceed with kinetic control. Based on these observations it can be assumed that formation of the kinetically controlled assembly might be largely dependent on the presence of the nonpolar cholesterol moiety as well as the amount of poor solvent present. However, under solvent-free conditions, structurally different aggregates were observed when drop cast from solutions containing monomer, whereas a left-handed CD signal corresponding to the thermodynamically controlled assemblies was observed from pre-aggregated solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200700130DOI Listing

Publication Analysis

Top Keywords

squaraine dye
16
poor solvent
12
thermodynamically stable
12
kinetically controlled
12
chiral supramolecular
8
supramolecular assemblies
8
solution thin
8
thin films
8
opposite chirality
8
fractions poor
8

Similar Publications

Phosphorus-containing fluorophores provide a versatile framework for tailoring photophysical properties, enabling the design of advanced fluorogenic materials for various applications. Boron dipyrromethene (BODIPY) and squaraine dyes are of interest due to their multifaceted modularity and synthetic accessibility. Incorporating phosphorus-based functional groups into BODIPY or squaraine scaffolds has been achieved through a plethora of synthetic methods, including post-dye assembly functionalization.

View Article and Find Full Text PDF

In this study, we present a protecting group photocleavage method to investigate both covalent and noncovalent interactions between a squaraine dye (PSq) and Bovine Serum Albumin (BSA). This approach allows for the photoinduced activation and deactivation of PSq fluorescence, providing valuable insights into the dual-mode interaction of the dye with the protein.

View Article and Find Full Text PDF

We synthesized a squaraine dye (F-0) to develop a method for detecting pyrophosphate (PPi) and alkaline phosphatase (ALP) by modulating the fluorescence of F-0. The fluorescence intensity of the F-0 system was quenched upon the addition of Cu ions; however, it was restored when PPi was introduced due to the formation of a complex between PPi and Cu. Since ALP can hydrolyze PPi, the fluorescence of the system was quenched again upon the addition of ALP.

View Article and Find Full Text PDF

We developed dye-sensitized solar cells (DSSCs) using 1,5-carboxy-2-[[3-[(2,3-dihydro-1,1-dimethyl-3-ethyl-1H-benzo[e]indol-2-ylidene)methyl]-2-hydroxy-4-oxo-2-cyclobuten-1-ylidene]methyl]-3,3-dimethyl-1-octyl-3H-indolium and 1,3,3-trimethyl indolino-6'-nitrobenzopyrylospiran. The DSSCs incorporate photochromic molecules to regulate photoelectric conversion properties. We irradiated photoelectrodes adsorbed with SQ2/SPNO using both UV and visible light and observed the color changes in these photoelectrodes.

View Article and Find Full Text PDF

NIR-Sensitive Squaraine Dye-Peptide Conjugate for Trypsin Fluorogenic Detection.

Biosensors (Basel)

September 2024

Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-Ku, Kitakyushu-Shi, Fukuoka 808-0196, Japan.

Trypsin enzyme has gained recognition as a potential biomarker in several tumors, such as colorectal, gastric, and pancreatic cancer, highlighting its importance in disease diagnosis. In response to the demand for rapid, cost-effective, and real-time detection methods, we present an innovative strategy utilizing the design and synthesis of NIR-sensitive dye-peptide conjugate () for the sensitive and selective monitoring of trypsin activity by fluorescence ON/OFF sensing. The current research deals with the design and synthesis of three unsymmetrical squaraine dyes , , and along with a dye-peptide conjugate as a trypsin-specific probe followed by their photophysical characterizations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!