A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Correlation of tracheal smooth muscle function with structure and protein expression during early development. | LitMetric

AI Article Synopsis

  • Premature infants have a higher survival rate, making it essential to study how their airway function and structure develop over time.
  • The study examines the relationship between the function of airway smooth muscle and its cellular structure during critical early development stages in newborn lambs.
  • Findings indicate that while some structural aspects of airway smooth muscle remain stable during development, the increase in myosin heavy chain isoforms correlates with enhanced contractility and maturation of airway function.

Article Abstract

With increased survival of premature infants, understanding the impact of development on airway function and structure is imperative. Airway smooth muscle plays a primary role in the modulation of airway function. The purpose of this study is to correlate the functional maturation of airway smooth muscle during the perinatal period with structural alterations at the cellular, ultrastructural, and molecular levels. Length-tension and dose-response analyses were performed on tracheal rings acquired from preterm and term newborn lambs. Subsequent structural analyses included isolated airway smooth muscle cell length, electron microscopy, and myosin heavy chain isoform expression measurements. Functionally the compliance, contractility, and agonist sensitivity of the tracheal rings matured during preterm to term development. Structurally, isolated cell lengths and electron microscopic ultrastructure were not significantly altered during perinatal development. However, expression of myosin heavy chain isoforms increased significantly across the age range analyzed, correlating with the maturational increase in smooth muscle contractility. In conclusion, the developmental alterations in tracheal function appear due, in part, to enhanced smooth muscle myosin heavy chain expression.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ppul.20494DOI Listing

Publication Analysis

Top Keywords

smooth muscle
24
airway smooth
12
myosin heavy
12
heavy chain
12
function structure
8
airway function
8
tracheal rings
8
preterm term
8
smooth
6
muscle
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!