The rostral portion of the ventral medial medulla (RVM) is a crucial site for the supraspinal antinociceptive actions of opioids. Previous studies have reported that serotonergic antagonists block the analgesia induced by microinjection of morphine into the RVM (Hammond and Yaksh [1984] Brain Res 298:329-337) and that spinally projecting serotonergic RVM neurons express mu-opioid receptors (MOR) (Kalyuzhny et al. [1996] J Neurosci 16:6490-6503; Wang and Wessendorf [1999] J Comp Neurol 404:183-196). In addition, axons immunoreactive for the endogenous MOR ligand endomorphin-2 (Tyr-Pro-Phe-Phe-NH2) (EM-2) have been reported to be in the RVM (Martin-Schild et al. [1999] J Comp Neurol 405:450-471; Pierce and Wessendorf [2000] J Chem Neuroanat 18:181-207). In the present study we examined the relationship of EM-2-immunoreactive (EM-2-ir) axons to serotonergic and nonserotonergic RVM neurons in rats, including neurons projecting to the dorsal spinal cord. We also examined the origins of EM-2-ir in the RVM. Using unbiased methods we estimated the total number of cells in the RVM to be 1.50 x 10(4) and of these up to 70% were retrogradely labeled from the dorsal spinal cord. EM-2-ir fibers apposed both serotonergic and nonserotonergic RVM neuronal profiles. However, serotonergic profiles were significantly more likely to be apposed than nonserotonergic profiles. Thus, although serotonergic neurons comprise a minority of RVM neurons (23% of the total RVM neurons), they appear to be selectively apposed by EM-2-ir fibers. We also found that hypothalamic EM-2-ir neurons, but not EM-2-ir neurons, in the nucleus of the solitary tract projected their axons to the RVM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cne.21343 | DOI Listing |
Elife
January 2025
Centre for Neuroscience, Indian Institute of Science, Bengaluru, India.
Stress is a potent modulator of pain. Specifically, acute stress due to physical restraint induces stress-induced analgesia (SIA). However, where and how acute stress and pain pathways interface in the brain are poorly understood.
View Article and Find Full Text PDFNeuroscience
January 2025
Center for Neuroscience, Indian Institute of Science, Bengaluru 560012, India. Electronic address:
Pain and itch are unpleasant and distinct sensations that give rise to behaviors such as reflexive withdrawal and scratching in humans and mice. Interestingly, it has been observed that pain modulates itch through the neural circuits housed in the brain and spinal cord. However, we have yet to fully understand the identities and mechanisms by which specific neural circuits mediate pain-induced modulation of itch.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA.
Pain
October 2024
Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Chemotherapy-induced peripheral neuropathic pain aggravates cancer survivors' life burden. Electroacupuncture (EA) has exhibited promising analgesic effects on neuropathic pain in previous studies. We investigated whether EA was effective in a paclitaxel-induced neuropathic pain mouse model.
View Article and Find Full Text PDFNeurobiol Pain
July 2024
Gastroenterology & Hepatology Division, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
Recent evidence suggests that the descending modulatory pathways from the brainstem rostral ventromedial medulla (RVM) are important for bladder inflammatory pain. This study aimed to identify the long-term molecular changes in RVM neurons due to early life cystitis during neuronal development and the effect of reexposure later in adulthood. RVM tissues from two treatment protocols were used: (1) neonatal zymosan exposures with acute adult rechallenge (RC) and (2) only neonatal zymosan exposures (NRC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!