Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mechanisms underlying beta-adrenoceptor (beta-AR)-mediated vascular relaxation were studied in the isolated rat abdominal aorta. In the endothelium-denuded helical preparations, a non-selective beta-AR agonist isoprenaline elicited a concentration-dependent relaxation. In the absence of beta-AR antagonists, isoprenaline-induced relaxation was not practically affected by an adenylyl cyclase inhibitor SQ 22,536 (300 microM), but was strongly diminished by high-KCl (80 mM). Isoprenaline-induced relaxation in the presence of SQ 22,536 was significantly diminished by iberiotoxin (IbTx, 0.1 microM), but was not affected by 4-aminopyridine (4-AP, 3 mM). Isoprenaline-induced relaxation was not also affected by SQ 22,536 (300 microM) even in the presence of CGP20712A (a beta(1)-selective antagonist) and ICI-118,551 (a beta(2)-selective antagonist) (0.1 microM for each), but was strongly diminished by high-KCl. By contrast, SQ 22,536-resistant, isoprenaline-induced relaxation in the presence of CGP20712A plus ICI-118,551 was not affected by IbTx (0.1 microM), but was inhibited significantly by 4-AP (3 mM). These results suggest that in rat abdominal aortic smooth muscle: 1) both beta(1)-/beta(2)-AR- and beta(3)-AR-mediated relaxations substantially involve cAMP-independent mechanisms; 2) beta(1)-/beta(2)-AR-mediated, cAMP-independent relaxant mechanisms are partly attributed to the large-conductance, Ca (2+)-sensitive K(+) (MaxiK, BK) channel whereas beta(3)-AR-mediated relaxant mechanisms are attributed to K(v) channel.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1540/jsmr.42.217 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!