The FK506 binding protein FKBP52 belongs to the large family of immunophilins and is known as a steroid receptor-associated protein. Previous data suggest that FKBP52 is associated with the motor protein dynein and with the cytoskeleton during mitosis. Here we demonstrate a specific and direct interaction between FKBP52 and tubulin. The region of FKBP52 located between aa 267 and 400, which includes the tetratricopeptide repeat domain, is required for tubulin binding. We provide evidence that FKBP52 prevents tubulin polymerization and that an 84 residue sequence located in the C-terminal part of the molecule (aa 375-458) is necessary and sufficient for its microtubule depolymerization activity. In colocalization experiments in PC12 cells, FKBP52 is associated with tubulin in motile cellular compartments. Furthermore, we suggest that, by using siRNA, a decrease of FKBP52 expression in PC12 cells may lead to differentiated cell phenotype characterized by neurite extensions. Collectively, our data define an unexpected property of FKBP52 as a novel regulator of microtubule dynamics. The possible role of microtubule formation and tubulin binding of other immunophilins such as FKBP12 and FKBP51 is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.06-7667com | DOI Listing |
Nat Commun
January 2025
Cluster of Excellence Physics of Life, TUD Dresden University of Technology, 01062, Dresden, Germany.
Cilia assembly and function rely on the bidirectional transport of components between the cell body and ciliary tip via Intraflagellar Transport (IFT) trains. Anterograde and retrograde IFT trains travel along the B- and A-tubules of microtubule doublets, respectively, ensuring smooth traffic flow. However, the mechanism underlying this segregation remains unclear.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 13145-1384, Iran.
Inosine Monophosphate Dehydrogenase (IMPDH) catalyzes rate-limiting step of the reaction converting inosine monophosphate (IMP) to guanine nucleotides. IMPDH is up-regulated in the healthy proliferating cells and also in tumor cells to meet their elevated demand for guanine nucleotides. An exclusive regulatory mechanism for this enzyme is filamentation, through which IMPDH can resist allosteric inhibition by the end product, GTP.
View Article and Find Full Text PDFRedox Biol
January 2025
Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China. Electronic address:
Oocyte aging is closely related to a decline in female fertility, accompanied by increased reactive oxygen species levels and changes in protein posttranslational modifications. However, the role of protein palmitoylation in oocyte aging has not been investigated. In the present study, a new association between redox and palmitoylation in aging oocytes was found.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fujian Provincial Key Laboratory of Stomatology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, 350005 Fuzhou, Fujian, China.
Background: In this study, we prepared a porous gradient scaffold with hydroxyapatite microtubules (HAMT) and chitosan (CHS) and investigated osteogenesis induced by these scaffolds.
Methods: The arrangement of wax balls in the mold can control the size and distribution of the pores of the scaffold, and form an interconnected gradient pore structure. The scaffolds were systematically evaluated and for biocompatibility, biological activity, and regulatory mechanisms.
Int J Mol Sci
January 2025
School of Life Sciences, Soochow University, Suzhou 215123, China.
Extrachromosomal circular DNAs (eccDNAs) has been found to be widespread and functional in various organisms. However, comparative analyses of pre- and post-infection of virus are rarely known. Herein, we investigated the changes in expression patterns of eccDNA following infection with cytoplasmic polyhedrosis virus (BmCPV) and explore the role of eccDNA in viral infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!