In situ hybridization studies on the expression of type X collagen in fetal human cartilage.

Dev Biol

Max Planck Society, Clinical Research Unit for Rheumatology, Medical Clinic III, Federal Republic of Germany.

Published: December 1991

Type X collagen is a short, non-fibril-forming collagen restricted to the hypertrophic, calcifying zone of growth plate cartilage. It is developmentally regulated and found exclusively in hypertrophic cartilage. Here we report on the structure and distribution of human type X collagen based on the cloning of a PCR fragment covering 292 bp of the carboxy-terminal, non-triple-helical domain. Seventy-five percent of the sequence are identical to that of chicken type X collagen at nucleic acid level and 84% at amino acid level. This probe was used for in situ hybridization analyses of type X collagen expression in a human growth plate. Human fetal cartilage, which is different from the avian cartilage-bone transition zone, showed strong type X collagen expression confined to the lower hypertrophic zone of the growth plate. The upper zone of hypertrophic chondrocytes did not contain alpha 1(X) transcripts, indicating that type X collagen expression follows cellular hypertrophy. The distribution of type X collagen mRNA has been previously unreported in chondrocytes from zones of secondary ossification and in chondrocytes associated with endochondral bone trabecules containing calcified cartilage. In situ hybridization analyses with probes for type I and II collagen on consecutive sections indicated a spatial gradient in chondrocyte differentiation in the human epiphysis. Chondrocytes of low type II collagen expression in the resting zone are followed by proliferating columnar chondrocytes with strong type II collagen expression and a zone of hypertrophic chondrocytes synthesizing type X and type II collagen. In contrast to findings in avian growth cartilage in some of our samples of human epiphyseal cartilage hypertrophic chondrocytes continued to strongly express type II collagen down to the chondro-osseous junction. Transcripts of the alpha 2(I) collagen gene, however, were detected only in perichondrium, vascular cavities, and bone, but not in hypertrophic or any other chondrocytes. The above observations demonstrate that the isolation of the human type X collagen DNA will contribute to studies of pathways of chondrocyte differentiation in the mammalian growth plate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0012-1606(91)90274-7DOI Listing

Publication Analysis

Top Keywords

type collagen
56
collagen expression
20
collagen
16
growth plate
16
hypertrophic chondrocytes
16
type
15
situ hybridization
12
zone growth
8
human type
8
acid level
8

Similar Publications

The periodontal ligament (PDL) is a connective tissue, and PDL cells have a potential to differentiate into cementoblasts, osteoblasts, and gingival fibroblasts. This study investigated whether transcription factor c-Myb could induce differentiation of PDL cells for periodontal regeneration. PDL cells were isolated from extracted teeth and cultured.

View Article and Find Full Text PDF

Increased matrix metalloproteinase-1 expression by coexposure to UVA and cigarette sidestream smoke and contribution of histone acetylation.

Genes Environ

January 2025

Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52- 1, Suruga-ku, Shizuoka, 422-8526, Japan.

Background: Skin is exposed to various environmental factors throughout life, and some of these factors are known to contribute to skin aging. Long-term solar UV exposure is a well-known cause of skin aging, as is cigarette smoke, which contains a number of chemicals. In this study, combined effect of UVA and cigarette sidestream smoke (CSS) on matrix metalloproteinase-1 (MMP-1) induction was investigated.

View Article and Find Full Text PDF

Collagen-mediated cardiovascular calcification.

Int J Biol Macromol

January 2025

Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; School of Engineering Medicine, Beihang University, Beijing 100083, China. Electronic address:

Cardiovascular calcification is a pathological process commonly observed in the elderly. Based on the location of the calcification, cardiovascular calcification can be classified into two main types: vascular calcification and valvular calcification. Collagen plays a critical role in the development of cardiovascular calcification lesions.

View Article and Find Full Text PDF

Urchin-like magnetic nanoparticles loaded with type X collagen siRNA and Stattic to treat triple negative breast cancer under rotating magnetic field like an "enchanted micro-scalpel".

Int J Biol Macromol

January 2025

Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710100, Shaanxi, PR China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, PR China. Electronic address:

Magnetic nanoparticles effectively target drug delivery, contrast agents, biosensors, and more. Urchin-like magnetic nanoparticles (UMN) with abundant spike-like structures exhibit superior magneto-mechanical force to destroy tumor cells compared with other shapes of magnetic nanoparticles. However, when cell contents are released from tumor cells induced by magneto-mechanical force, they can act on surrounding tumor cells to facilitate tumor development.

View Article and Find Full Text PDF

Background: Skin melanoma is a highly metastatic cancer with an increasing global incidence. Despite advancements in immunotherapy, new treatment strategies based on tumor biology are essential for improving outcomes and developing novel therapies. Autophagy plays a critical role in melanoma cell metabolism and affects the tumor microenvironment (TME).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!