Objective: Human papillomavirus (HPV) is the essential causative factor in cervical carcinogenesis, and apoptosis inhibition is one of the key features of HPV-induced malignant transformation. This study is to investigate the possible cause-effect association between high-risk HPV and cellular FLICE-like inhibitory protein (c-FLIP), an important apoptosis regulator, during cervical carcinogenesis.

Methods: A series of 80 archival samples, including 20 squamous cervical carcinomas (SCC) 54 cervical intraepithelial neoplasia (CIN) lesions and 6 normal cervical tissues, were subjected for c-FLIP immunohistochemical staining and HPV HC-II analysis. Typing HPV-16 infection was analyzed by the polymerase chain reaction (PCR), and its status was assessed with the integrity and disruption of the HPV-16 E2 gene, which was amplified in three overlapping fragments.

Results: The types of HR-HPV infection and E2 disruption were associated closely with cervical lesion severity. There was a significant relationship between lesion grade and c-FLIP expression level. c-FLIP overexpression was also closely associated with HR-HPV infection and its integration status. Multivariate regression analysis revealed c-FLIP as a strong independent predictor for CIN, with 100% PPV, and showed 90.9% PPV in detecting HR-HPV, and remained a significance factor to rule out which case has no HR-HPV integration, with a 94.7% sensitivity and a 90.0% NPV.

Conclusions: The present data approved that c-FLIP overexpression is related significantly to the presence of HR-HPV infection and its integration status during progression of cervical squamous cell cancer and confirmed the role of c-FLIP as an early marker of cervical carcinogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygyno.2007.01.051DOI Listing

Publication Analysis

Top Keywords

cervical carcinogenesis
12
hr-hpv infection
12
cervical
9
c-flip expression
8
human papillomavirus
8
c-flip overexpression
8
infection integration
8
integration status
8
c-flip
7
hr-hpv
5

Similar Publications

Tumor initiation represents the first step in tumorigenesis during which normal progenitor cells undergo cell fate transition to cancer. Capturing this process as it occurs in vivo, however, remains elusive. Here we employ spatiotemporally controlled oncogene activation and tumor suppressor inhibition together with multiomics to unveil the processes underlying oral epithelial progenitor cell reprogramming into tumor initiating cells at single cell resolution.

View Article and Find Full Text PDF

Background/objectives: In the past few decades, many studies have been conducted to find out that psychological stress and cancer are closely linked. Moreover, it was reported that stress can induce mutations in gene level. Therefore, in this study we want to examine a relationship between stressful life events, gene mutation and cancer.

View Article and Find Full Text PDF

Background And Purpose: F. nucleatum, a gram-negative oral bacteria, is abundant in laryngeal cancer (LC). While specific 14-3-3 proteins act as LC oncogenes, the link between F.

View Article and Find Full Text PDF

Background: Atezolizumab plus bevacizumab has shown promising efficacy in advanced mucosal melanoma in the multi-centre phase II study. This report updates 3-year survival outcomes and multi-omics analysis to identify potential response biomarkers.

Methods: Forty-three intention-to-treat (ITT) patients received intravenous administration of atezolizumab and bevacizumab every 3 weeks.

View Article and Find Full Text PDF

Head and neck squamous cell carcinomas (HNSCCs) represent a heterogeneous group of malignancies with multifactorial aetiologies. High-risk human papillomavirus (hrHPV) infections, particularly HPV16, and the dysregulation of telomerase activity, specifically through its catalytic subunit, telomerase reverse transcriptase (TERT) are among the key contributors to HNSCC development and progression. HPV promotes oncogenesis via the E6 and E7 oncoproteins, which inactivate tumour suppressors TP53 and RB1, leading to unchecked cellular proliferation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!