Classification of hemodynamics from dynamic-susceptibility-contrast magnetic resonance (DSC-MR) brain images using noiseless independent factor analysis.

Med Image Anal

Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Sec. 2, Li-Nong St., Pei-Tou, Taipei 112, Taiwan, ROC.

Published: June 2007

Dynamic-susceptibility-contrast (DSC) magnetic resonance imaging records signal changes on images when the injected contrast-agent particles pass through a human brain. The temporal signal changes on different brain tissues manifest distinct blood-supply patterns which are vital for the profound analysis of cerebral hemodynamics. Under the assumption of the spatial independence among these patterns, noiseless independent factor analysis (IFA) was first applied to decompose the DSC-MR data into different independent-factor images with corresponding signal-time curves. A major tissue type, such as artery, gray matter, white matter, vein, sinus, and choroid plexus, etc., on each independent-factor image was further segmented out by an optimal threshold. Based on the averaged signal-time curve on the arterial area, the cerebral hemodynamic parameters, such as relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF), and mean transit time (MTT), were computed and their averaged ratios between gray matter and white matter for normal subjects were in good agreement with those in the literature. Data of a stenosis patient before and after treatment were analyzed and the result illustrates that this method is effective in extracting spatiotemporal blood-supply patterns which improves differentiation of pathological and non-pathological hemodynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.media.2007.02.002DOI Listing

Publication Analysis

Top Keywords

magnetic resonance
8
noiseless independent
8
independent factor
8
factor analysis
8
signal changes
8
blood-supply patterns
8
gray matter
8
matter white
8
white matter
8
relative cerebral
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!