Osteoarthritis (OA) is a chronic, degenerative disorder of multifactorial aetiology, characterized by loss of articular cartilage and periarticular bone remodelling. Goals of managing OA include controlling pain, maintaining and improving function and health-related quality of life, and limiting functional impairment. Although several managements had been proved to ameliorate the symptoms of osteoarthritis, no methods could cure it thoroughly. High-molecular-weight hyaluronan (HMW-HA) is a major component of synovial joint fluids which physically acts as a viscous lubricant for slow joint movements and as an elastic shock absorber during rapid movements. It also has a variety of biologic effects in vivo, such as inhibiting the release of inflammatory factors and suppressing the degradation of cartilage matrix. Intra-articular injection of synthetic HMW-HA has been used as viscosupplement for knee OA and its therapeutic efficacy has been verified. However, repeated injections of HMW-HA which is needed to control symptoms increase the probability of infection and sometimes there will have acute joint pain with effusion, which requires aspiration to exclude sepsis. In order to overcome the disadvantages of repeated injections of HMW-HA, novel strategies should be developed. As HMW-HA is synthesized by hyaluronan synthase-2 (HAS2), we postulate that HAS2 gene could be delivered into intra-articular cells by methods of gene therapy to achieve long-lasting synthesis of HMW-HA. In our opinion, this strategy seems to hold interesting future prospects for the treatment of OA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mehy.2007.01.084 | DOI Listing |
Alzheimers Dement
December 2024
University of Kentucky Sanders-Brown Center on Aging, Lexington, KY, USA.
Background: The presence of multiple comorbid pathologic features in late-onset dementia has been well documented across cohort studies that incorporate autopsy evaluation. It is likely that such mixed pathology potentially confounds the results of interventional trials that are designed to target a solitary pathophysiologic mechanism in Alzheimer's disease and related dementias (ADRD).
Method: The UK ADRC autopsy database was screened for participants who had previously engaged in therapeutic interventional trials for Alzheimer's disease, vascular cognitive impairment, dementia, and/or ADRD prevention trials from 2005 to the present.
Background: Convergent evidence indicates that deficits in the endosomal recycling pathway underlies pathogenesis of Alzheimer's disease (AD). SORL1 encodes the retromer-associated receptor SORLA that plays an essential role in recycling of AD-associated cargos such as the amyloid precursor protein and the glutamatergic AMPA receptor. Importantly, loss of function pathogenic SORL1 variants are associated with AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
UCSF Weill Institute for Neurosciences, San Francisco, CA, USA.
Background: Efforts to genetically reverse C9orf72 pathology have been hampered by our incomplete understanding of the regulation of this complex locus.
Method: We generated five different genomic excisions at the C9orf72 locus in a patient-derived iPSC line and a WT line (11 total isogenic lines), and examined gene expression and pathological hallmarks of C9 FTD/ALS in motor neurons differentiated from these lines. Comparing the excisions in these isogenic series removed the confounding effects of different genomic backgrounds and allowed us to probe the effects of specific genomic changes.
Background: Understanding the fundamental differences between the human and pre-human brain is a prerequisite for designing meaningful models and therapies for AD. Expressed CHRFAM7A, a human restricted gene with carrier frequency of 75% in the human population predicts profound translational significance.
Method: The physiological role of CHRFAM7A in human brain is explored using multiomics approach on 600 post mortem human brain tissue samples (ROSMAP).
Alzheimers Dement
December 2024
Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.
Background: Increased APP gene dosage is both necessary and sufficient to result in Down Syndrome Alzheimer's Disease (DSAD) in humans and AD-related degenerative changes in mouse models of DS.
Method: We tested antisense oligonucleotides (ASOs) designed to suppress APP expression via RNAseH1-mediated degradation in the Dp(16)1Yey or Dp(16) model of Down Syndrome. Dp(16) is trisomic for human chromosome 21 syntenic regions on murine chromosome 16, containing 115 genes including APP.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!