Neuroimaging and postmortem studies suggest the involvement of white matter disease in schizophrenia, bipolar disorder, and unipolar major depression. To date there is no published, collective study of myelin staining in these three psychiatric disorders. Deep white matter lesions, potentially affecting corticolimbic circuits, have been particularly implicated in late life depression and poor outcome bipolar disorder. We hypothesized that individuals with these disorders would manifest reduced deep white matter myelin staining compared to normal controls. Sixty transverse sections of fixed dorsolateral prefrontal cortex - 15 from individuals with each psychiatric disorder and 15 from normal controls - were stained according to the method of Kluver and Barrera. Myelin staining intensity was quantified by digital image analysis and expressed as a percent of grey matter staining for a given section. Mean deep (but not gyral) white matter myelin staining was less intense in all three psychiatric groups compared to control. This difference was statistically significant for the bipolar and unipolar groups, with a strong trend toward attenuated staining in the schizophrenic group. Our findings are consistent with postmortem and neuroimaging studies of affective disorders that indicate an increased prevalence of deep white matter lesions in unipolar and bipolar affective disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.psychres.2006.12.019 | DOI Listing |
Curr Med Imaging
January 2025
Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Road, Xicheng District, Beijing 100050, China.
Background: The neuroanatomical basis of white matter fiber tracts in gait impairments in individuals suffering from Parkinson's Disease (PD) is unclear.
Methods: Twenty-four individuals living with PD and 29 Healthy Controls (HCs) were included. For each participant, two-shell High Angular Resolution Diffusion Imaging (HARDI) and high-resolution 3D structural images were acquired using the 3T MRI.
Biomed Opt Express
January 2025
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China.
Multiphoton fluorescence microscopy (MFM), renowned for its noninvasiveness and high spatiotemporal resolution, is extensively applied in brain structure imaging in vivo. Three-photon fluorescence (3PF) imaging, excited at the NIR-III window, can penetrate the deepest mouse cerebrovascular. Evans blue, a substance known for its low toxicity, high water solubility, and resistance to metabolism, is frequently employed to assess blood-brain barrier (BBB) permeability.
View Article and Find Full Text PDFJ Zhejiang Univ Sci B
December 2024
Center for Cognition and Brain Disorders / Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 311121, China.
White-matter tracts play a pivotal role in transmitting sensory and motor information, facilitating interhemispheric communication and integrating different brain regions. Meanwhile, sensorimotor disturbance is a common symptom in patients with major depressive disorder (MDD). However, the role of aberrant sensorimotor white-matter system in MDD remains largely unknown.
View Article and Find Full Text PDFTrop Med Health
January 2025
Department of Community Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
Background: Neurobrucellosis, a serious central nervous system infection caused by Brucella species, presents significant challenges due to its diverse clinical manifestations and the risk of long-term complications and poor outcomes. Identifying predictors of adverse outcomes is critical for improving patient management and overall prognosis.
Objectives: This study aimed to evaluate the long-term morbidity and mortality associated with neurobrucellosis and to identify key predictors of adverse outcomes.
J Neuroimaging
January 2025
Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA.
Background And Purpose: MRI is crucial for multiple sclerosis (MS), but the relative value of portable ultra-low field MRI (pULF-MRI), a technology that holds promise for extending access to MRI, is unknown. We assessed white matter lesion (WML) detection on pULF-MRI compared to high-field MRI (HF-MRI), focusing on blinded assessments, assessor self-training, and multiplanar acquisitions.
Methods: Fifty-five adults with MS underwent pULF-MRI following their HF-MRI.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!