Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The purpose of this study was to examine lower extremity kinetics and muscle activity during backward slope walking to clarify the relationship between joint moments and powers and muscle activity patterns observed in forward slope walking. Nine healthy volunteers walked backward on an instrumented ramp at three grades (-39% (-21 degrees ), 0% (level), +39% (+21 degrees )). EMG activity was recorded from major lower extremity muscles. Joint kinetics were obtained from kinematic and force platform data. The knee joint moment and power generation increased significantly during upslope walking; hip joint moment and power absorption increased significantly during downslope walking. When compared to data from forward slope walking, these backward walking data suggest that power requirements of a task dictate the muscle activity pattern needed to accomplish that movement. During downslope walking tasks, power absorption increased and changes in muscle activity patterns were directly related to the changes in the joint moment patterns. In contrast, during upslope walking tasks, power generation increased and changes in the muscle activity were related to the changes in the joint moments only at the 'primary' joint; at adjacent joints the changes in muscle activity were unrelated to the joint moment pattern. The 'paradoxical' changes in the muscle activity at the adjacent joints are possibly related to the activation of biarticular muscles required by the increased power generation at the primary joint. In total, these data suggest that changing power requirements at a joint impact the control of muscle activity at that and adjacent joints.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiomech.2007.02.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!