This paper discusses the application of virtual reality technology in the 3-D visible human body and acupuncture research. Based on the 3-D visible human fused with the localization information and hierarchy of acupoints, the paper analyzes the force against the needle and haptic rendering during the needle manipulation according to the physical properties of different tissues. A haptic model is constructed to demonstrate the force behaviors during acupuncture, and the force will be produced and passed to the manipulator by a force feedback device. It enriches the contents of 3-D visible human project, provides a dynamic simulation instrument for acupuncture teaching, and supplies a platform for acupuncture research.

Download full-text PDF

Source

Publication Analysis

Top Keywords

3-d visible
12
visible human
12
force feedback
8
virtual reality
8
force
5
acupuncture
5
[preliminary study
4
study force
4
feedback acupuncture
4
acupuncture virtual
4

Similar Publications

Article Synopsis
  • Harmful algal blooms (HABs), especially those from toxin-producing microalgae like Prorocentrum micans, are a recurring issue in Patagonian fjords, and a significant HB-HAB occurred in Northwest Chilean Patagonia during February-March 2022.
  • Observations showed a dramatic increase in P. micans cell density from low levels in January to a peak of over 8.3 x 10 cells/mL by mid-February, associated with warmer sea temperatures and varying salinity.
  • Satellite images and oceanographic modeling revealed that water currents and temperature variations in the Gulf of Ancud supported the development and maintenance of this harmful algal bloom, indicating a hotspot for both HABs and HB-HAB
View Article and Find Full Text PDF

Comparing Results from 2-D and 3-D Phenotyping Systems for Soybean Root System Architecture: A 'Comparison of Apples and Oranges'?

Plants (Basel)

November 2024

Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Macdonald Campus, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.

Typically, root system architecture (RSA) is not visible, and realistically, high-throughput methods for RSA trait phenotyping should capture key features of developing root systems in solid substrates in 3D. In a published 2-D study using thin rhizoboxes, vermiculite as a growing medium, and photography for imaging, triplicates of 137 soybean cultivars were phenotyped for their RSA. In the transition to 3-D work using X-ray computed tomography (CT) scanning and mineral soil, two research questions are addressed: (1) how different is the soybean RSA characterization between the two phenotyping systems; and (2) is a direct comparison of the results reliable? Prior to a full-scale study in 3D, we grew, in pots filled with sand, triplicates of the Casino and OAC Woodstock cultivars that had shown the most contrasting RSAs in the 2-D study, and CT scanned them at the V1 vegetative stage of development of the shoots.

View Article and Find Full Text PDF

This paper is aimed at devising a new optical theorem formulation for the 3-D plane-wave scattering from an infinite resistive plane and, more generally, a thin dielectric plate with a finite-size inhomogeneity shaped as a hollow or sealed hole. This formulation is further modified to cover the case of the plane guided wave scattering from the same inhomogeneity. For the lossless plane, the diffracted field combines a classical outgoing spherical wave, satisfying the Silver-Muller radiation condition, with an outgoing cylindrical guided wave supported by the plane; the power absorbed in the lossy filling is finite.

View Article and Find Full Text PDF

The recent advances in micromanufacturing have been pushing boundaries of the new generation of semiconductor devices, which, in the meantime, brings new challenges in the material and structural characterization - a key step to ensure the device quality through the micromanufacturing process. An ultrafast laser-enable optoacoustic characterization methodology is developed, targeting in situ calibration and delineation of the three-dimensional (3-D), nanoscopic interior features of opaque semiconductor chips. With the guidance of ultrafast electron-phonon coupling effect and velocity-perturbated optical interference, a femtosecond-laser pump-probe set-up based on Sagnac interferometer is configured to generate and acquire picosecond ultrasonic bulk waves (P-UBWs) traversing the microchips.

View Article and Find Full Text PDF

3-D bioprinting is a promising technology to fabricate custom geometries for tissue engineering. However, most bioprintable hydrogels are weak and fragile, difficult to handle and cannot mimetic the mechanical behaviors of the native soft elastic tissues. We have developed a visible light crosslinked, single-network, elastic and biocompatible hydrogel system based on an acrylated triblock copolymer of poly(ethylene glycol) PEG and polycaprolactone (PCL) (PEG-PCL-DA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!