Formation of bone-like apatite layer on chitosan fiber mesh scaffolds by a biomimetic spraying process.

J Mater Sci Mater Med

3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Univ. Minho, Campus de Gualtar, 4710-057 Braga, Portugal.

Published: July 2007

Bone-like apatite coating of polymeric substrates by means of biomimetic process is a possible way to enhance the bone bonding ability of the materials. The created apatite layer is believed to have an ability to provide a favorable environment for osteoblasts or osteoprogenitor cells. The purpose of this study is to obtain bone-like apatite layer onto chitosan fiber mesh tissue engineering scaffolds, by means of using a simple biomimetic coating process and to determine the influence of this coating on osteoblastic cell responses. Chitosan fiber mesh scaffolds produced by a previously described wet spinning methodology were initially wet with a Bioglass((R))-water suspension by means of a spraying methodology and then immersed in a simulated body fluid (SBF) mimicking physiological conditions for one week. The formation of apatite layer was observed morphologically by scanning electron microscopy (SEM). As a result of the use of the novel spraying methodology, a fine coating could also be observed penetrating into the pores, that is clearly within the bulk of the scaffolds. Fourier Transform Infrared spectroscopy (FTIR-ATR), Electron Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD) analysis also confirmed the presence of apatite-like layer. A human osteoblast-like cell line (SaOs-2) was used for the direct cell contact assays. After 2 weeks of culture, samples were observed under the SEM. When compared to the control samples (unmodified chitosan fiber mesh scaffolds) the cell population was found to be higher in the Ca-P biomimetic coated scaffolds, which indicates that the levels of cell proliferation on this kind of scaffolds could be enhanced. Furthermore, it was also observed that the cells seeded in the Ca-P coated scaffolds have a more spread and flat morphology, which reveals an improvement on the cell adhesion patterns, phenomena that are always important in processes such as osteoconduction.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10856-006-0063-4DOI Listing

Publication Analysis

Top Keywords

apatite layer
16
chitosan fiber
16
fiber mesh
16
bone-like apatite
12
mesh scaffolds
12
layer chitosan
8
scaffolds
8
spraying methodology
8
coated scaffolds
8
cell
6

Similar Publications

The objective of this study was to tailor an osteoinductive scaffold for alveolar bone regeneration and around immediately placed implants in extraction sockets of dogs. Tailored amorphous multiporous bioactive glass (TAMP -BG) was prepared and characterized for bioactivity and response of human alveolar bone marrow mesenchymal stem cells (hABMSCs). Extraction sockets of twenty-two male mongrel dogs received TAMP-BG in the right side around implant in the distal socket of the mandibular fourth premolar (P4), while the adjacent empty mesial socket of the same tooth was filled with the same graft.

View Article and Find Full Text PDF

Enhanced mechanical properties and in vitro bioactivity of silicon nitride ceramics with SiO, YO, and AlO as sintering aids.

J Mech Behav Biomed Mater

January 2025

School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China. Electronic address:

Silicon nitride (Si₃N₄) ceramics exhibit excellent mechanical properties and biocompatibility, making them highly suitable for biomedical applications, particularly in implants. In this study, the mechanical properties and bioactivity of Si₃N₄ ceramics with varying amounts of Y₂O₃-Al₂O₃-SiO₂ sintering aids were investigated. Increasing the sintering additive content from 4 wt% to 8 wt% substantially improved the bulk density of the ceramics, leading to notable enhancements in mechanical properties.

View Article and Find Full Text PDF

Melt electrowriting of hydrophilic/hydrophobic multiblock copolymers for bone tissue regeneration.

Biomater Adv

January 2025

Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, 6229 ER Maastricht, the Netherlands. Electronic address:

Bone-healing complications can occur due to large bone defects or an insufficient bone regeneration capacity. Melt electrowriting (MEW) is a potential candidate for manufacturing synthetic scaffolds that may resolve bone-healing complications. MEW can exploit various biocompatible polymers with a wide range of tissue engineering applications.

View Article and Find Full Text PDF

Surface State Control of Apatite Nanoparticles by pH Adjusters for Highly Biocompatible Coatings.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.

Apatite nanoparticles are biocompatible nanomaterials, so their film formation on biodevices is expected to provide effective bonding with living organisms. However, the biodevice-apatite interfaces have not yet been elucidated because there is little experimental evaluation and discussion on the nanoscale interactions, as well as the apatite surface reactivities. Our group has demonstrated the biomolecular adsorption properties on a quartz crystal microbalance with dissipation (QCM-D) sensor coated with apatite nanoparticles, demonstrating the applicability of apatite nanoparticle films on devices.

View Article and Find Full Text PDF

The erosion caused by high-temperature calcium-magnesium-alumina-silicate (CMAS) has emerged as a critical impediment to the advancement of thermal barrier coating (TBC). In this study, a series of high-entropy rare earth zirconates, (LaSmDyErGd)(ZrCe)O ( = 0, 0.2, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!