AI Article Synopsis

  • Gliomas have multiple genetic changes that lead to fast growth and invasion, and FAK and IGF-IR play key roles in these processes.
  • The dual tyrosine kinase inhibitor TAE226 reduces the activity of FAK and IGF-IR, slowing down glioma cell growth, promoting cell cycle arrest, and significantly decreasing invasion in lab settings.
  • In animal models, TAE226 also improved survival rates, suggesting that targeting FAK and IGF-IR could be a promising approach for treating gliomas.

Article Abstract

Multiple genetic aberrations in human gliomas contribute to their highly infiltrative and rapid growth characteristics. Focal adhesion kinase (FAK) regulates tumor migration and invasion. Insulin-like growth factor-I receptor (IGF-IR), whose expression correlates with tumor grade, is involved in proliferation and survival. We hypothesized that inhibiting the phosphorylation of FAK and IGF-IR by NVP-TAE226 (hereafter called TAE226), a novel dual tyrosine kinase inhibitor of FAK and IGF-IR, would suppress the growth and invasion of glioma cells. In culture, TAE226 inhibited extracellular matrix-induced autophosphorylation of FAK (Tyr(397)). TAE226 also inhibited IGF-I-induced phosphorylation of IGF-IR and activity of its downstream target genes such as MAPK and Akt. TAE226 retarded tumor cell growth as assessed by a cell viability assay and attenuated G(2)-M cell cycle progression associated with a decrease in cyclin B1 and phosphorylated cdc2 (Tyr(15)) protein expression. TAE226 treatment inhibited tumor cell invasion by at least 50% compared with the control in an in vitro Matrigel invasion assay. Interestingly, TAE226 treatment of tumor cells containing wild-type p53 mainly exhibited G(2)-M arrest, whereas tumor cells bearing mutant p53 underwent apoptosis. Induction of apoptosis by TAE226 was substantiated by detection of caspase-3/7 activation and poly(ADP-ribose) polymerase cleavage and by an Annexin V apoptosis assay. More importantly, TAE226 treatment significantly increased the survival rate of animals in an intracranial glioma xenograft model. Collectively, these data show that blocking the signaling pathways of FAK and IGF-IR with TAE226 has the potential to be an efficacious treatment for human gliomas.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1535-7163.MCT-06-0476DOI Listing

Publication Analysis

Top Keywords

fak igf-ir
12
tae226 treatment
12
tae226
9
focal adhesion
8
adhesion kinase
8
insulin-like growth
8
growth factor-i
8
factor-i receptor
8
human gliomas
8
tae226 inhibited
8

Similar Publications

Recent progress on FAK inhibitors with dual targeting capabilities for cancer treatment.

Biomed Pharmacother

July 2022

Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China. Electronic address:

Focal adhesion kinase (FAK, also known as PTK2) is a tyrosine kinase that regulates integrin and growth factor signaling pathways and is involved in the migration, proliferation and survival of cancer cells. FAK is a promising target for cancer treatment. Many small molecule FAK inhibitors have been identified and proven in both preclinical and clinical studies to be effective inhibitors of tumor growth and metastasis.

View Article and Find Full Text PDF

Oral submucous fibrosis (OSF) involves a high risk of malignant transformation and has been implicated in oral cancer. Limited studies have been conducted on the role of OSF in relation to the invasive capabilities and epithelial-mesenchymal transition (EMT) in oral cancer. Herein, we investigated the effects of OSF on the microenvironment of human oral cancer cells.

View Article and Find Full Text PDF

The outcomes for relapsed and metastatic Ewing sarcoma (EWS) is extremely poor. Therefore, it is important to identify the tumor-specific targets in these intractable diseases. High focal adhesion kinase (FAK) transcript expression levels in EWS cell lines are known.

View Article and Find Full Text PDF

β1 integrin- and JNK-dependent tumor growth upon hypofractionated radiation.

Oncotarget

August 2016

Prostate Cancer Discovery and Development Program, Philadelphia, PA, USA.

Radiation therapy is an effective cancer treatment modality although tumors invariably become resistant. Using the transgenic adenocarcinoma of mouse prostate (TRAMP) model system, we report that a hypofractionated radiation schedule (10 Gy/day for 5 consecutive days) effectively blocks prostate tumor growth in wild type (β1wt /TRAMP) mice as well as in mice carrying a conditional ablation of β1 integrins in the prostatic epithelium (β1pc-/- /TRAMP). Since JNK is known to be suppressed by β1 integrins and mediates radiation-induced apoptosis, we tested the effect of SP600125, an inhibitor of c-Jun amino-terminal kinase (JNK) in the TRAMP model system.

View Article and Find Full Text PDF

Epidermal growth factor (EGF)/insulin like growth factor-I (IGF-I) and Estradiol (E2) can regulate biological functions of hormone-dependent tumor cells. Fibronectin (FN) is a large glycoprotein abundantly expressed in breast cancer extracellular matrices (ECMs) postulated to be a marker of aggressiveness during cancer pathogenesis. In this study we demonstrate that IGF-I/EGF as well E2 strongly increase the adhesion of the MCF-7 breast cancer cells onto FN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!