Substrate oxidation and the respective contributions of exogenous glucose, glucose released from the liver, and muscle glycogen oxidation were measured by indirect respiratory calorimetry combined with tracer technique in eight control subjects and eight diabetic patients (5 men and 3 women in both groups) of similar age, height, body mass, and maximal oxygen uptake, over a 60-min exercise period on cycle ergometer at 50.8% (SD 4.0) maximal oxygen uptake [131.0 W (SD 38.2)]. The subjects and patients ingested a breakfast (containing approximately 80 g of carbohydrates) 3 h before and 30 g of glucose (labeled with 13C) 15 min before the beginning of exercise. The diabetic patients also received their usual insulin dose [Humalog = 9.1 U (SD 0.9); Humulin N = 13.9 U (SD 4.4)] immediately before the breakfast. Over the last 30 min of exercise, the oxidation of carbohydrate [1.32 g/min (SD 0.48) and 1.42 g/min (SD 0.63)] and fat [0.33 g/min (SD 0.10) and 0.30 g/min (SD 0.10)] and their contribution to the energy yield were not significantly different in the control subjects and diabetic patients. Exogenous glucose oxidation was also not significantly different in the control subjects and diabetic patients [6.3 g/30 min (SD 1.3) and 5.2 g/30 min (SD 1.6), respectively]. In contrast, the oxidation of plasma glucose and oxidation of glucose released from the liver were significantly lower in the diabetic patients than in control subjects [14.5 g/30 min (SD 4.3) and 9.3 g/30 min (SD 2.8) vs. 27.9 g/30 min (SD 13.3) and 21.6 g/30 min (SD 12.8), respectively], whereas that of muscle glycogen was significantly higher [28.1 g/30 min (SD 15.5) vs. 11.6 g/30 min (SD 8.1)]. These data indicate that, compared with control subjects, in diabetic patients fed glucose before exercise, substrate oxidation and exogenous glucose oxidation overall are similar but plasma glucose oxidation is lower; this is associated with a compensatory higher utilization of muscle glycogen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/japplphysiol.01462.2006 | DOI Listing |
Bioresour Technol
December 2024
School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, Shanghai, PR China; School of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, Fujian, PR China.
J Pharm Sci
January 2025
Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China. Electronic address:
The optimal method for administering meropenem remains controversial. This study was conducted to explore the optimal two-step infusion strategy (TIT), and to investigate whether TIT is superior to intermittent infusion therapy (IIT) and prolonged infusion therapy (PIT). A physiologically based pharmacokinetics model for critically ill patients was established and evaluated.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
Developing monolithic materials for chromatography columns with a novel interconnected porous structure is vital for the enhancement of the separation efficiency of RNA purification processes. Herein, a porous nanofibrous sponge (PNFS) is constructed by freeze molding and freeze-drying a nanofiber dispersion with ethylene vinyl alcohol copolymer nanofibers as the skeleton, chitosan (CS) and polyethylenimine (PEI) as the binders, and glutaraldehyde (GA) as the crosslinking agent. The results show that when the CS content of the dispersion is 1.
View Article and Find Full Text PDFMolecules
September 2024
Sichuan Yizhang Agricultural Development Co., Ltd., Nanchong 637009, China.
Chinese leaves, rich in verbascosides, were extracted using ultrasound-assisted extraction (UAE) and wall-breaking extraction (WBE) with deep eutectic solvents (Optimal UAE: 55 min, 200 mL/g liquid-solid ratio, 20% moisture, yielding 206.23 ± 0.58 mg GAE/g total phenolic content (TPC) and 1.
View Article and Find Full Text PDFJ Oral Biol Craniofac Res
August 2024
Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
Purpose: To investigate the effect of compressive force combined with vibration on expression of CC-chemokine ligand 2 (CCL2) and 5 (CCL5) in human periodontal ligament (hPDL) cells.
Methods: Human PDL cells were cultured and assigned into four groups: control (Con), compressive force 2.0 g/cm for 24 h and 48 h (C), vibration 0.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!