It is now known that circadian clocks are localized not only in the central pacemaker but also in peripheral organs. An example of a clock-dependent peripheral organ is the ovary of domestic poultry in which ovulation is induced by the positive feedback action of ovarian progesterone on the neuroendocrine system to generate a preovulatory release of LH during a daily 6-10 h "open period" of the ovulatory cycle. It has been assumed previously that the timing of ovulation in poultry is controlled solely by a clock-dependent mechanism within the neuroendocrine system. Here, we question this assumption by demonstrating the expression of the clock genes, Per2 (Period 2) and Per3, Clock, and Bmal1 (brain and muscle Arnt-like protein 1), in preovulatory follicles in laying quail. Diurnal changes in Per2 and Per3 expression were seen in the largest preovulatory follicle (F1) but not in smaller follicles. We next sought to identify clock-driven genes in preovulatory follicles focusing on those involved in the synthesis of progesterone. One such gene was identified, encoding steroidogenic acute regulatory protein (StAR), which showed 24-h changes in expression in the F1 follicle coinciding with those of Per2. Evidence that StAR gene expression is clock driven was obtained by showing that its 5' flanking region contains E-box enhancers that bind to CLOCK/BMAL1 heterodimers to activate gene transcription. We also showed that LH administration increased the promoter activity of chicken StAR. We therefore suggest that the timing of ovulation in poultry involves an LH-responsive F1 follicular clock that is involved in the timing of the preovulatory release of progesterone.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2007-0044DOI Listing

Publication Analysis

Top Keywords

steroidogenic acute
8
acute regulatory
8
regulatory protein
8
gene expression
8
neuroendocrine system
8
preovulatory release
8
timing ovulation
8
ovulation poultry
8
expression clock
8
preovulatory follicles
8

Similar Publications

Transcriptomic analysis reveals suppression of steroidogenic acute regulatory protein in gender-specific differences in Alzheimer's disease.

Biochim Biophys Acta Mol Basis Dis

January 2025

Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.

Alzheimer's disease (AD)-related dementia preferentially impacts two-thirds of women and one-third of men. The steroidogenic acute regulatory (StAR) protein mediates the biosynthesis of neurosteroids that sustain diverse neuronal activities. Aging, involving neurosteroidal imbalance, is the predominant risk factor for AD causing dementia.

View Article and Find Full Text PDF

The multiple facets of Rab proteins modulating the cellular distribution of cholesterol from the late endosomal compartment.

Biochim Biophys Acta Mol Cell Res

January 2025

School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia. Electronic address:

Cholesterol is an essential lipid that ensures the functional integrity of mammalian cells. Most cells acquire cholesterol via endocytosis of low-density lipoproteins (LDL). Upon reaching late endosomes/lysosomes (LE/Lys), incoming ligands, including LDL-derived cholesterol, are distributed to other organelles.

View Article and Find Full Text PDF

SARS-CoV-2-induced cytokine storm drives prolonged testicular injury and functional impairment in mice that are mitigated by dexamethasone.

PLoS Pathog

January 2025

Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America.

Compromised male reproductive health, including reduced testosterone and sperm count, is one of the long COVID symptoms in individuals recovering from mild-severe disease. COVID-19 patients display testicular injury in the acute stage and altered serum fertility markers in the recovery phase, however, long-term implications on the testis remain unknown. This study characterized the consequences of SARS-CoV-2 on testis function.

View Article and Find Full Text PDF

Thirty years of StAR gazing: expanding the universe of the steroidogenic acute regulatory protein.

J Endocrinol

January 2025

W L Miller, Department of Pediatrics, Center for Reproductive Sciences, and Institute for Human Genetics University of California, San Francisco, United Kingdom of Great Britain and Northern Ireland.

Current understanding of the biology, biochemistry and genetics of the steroidogenic acute regulatory protein (StAR) and its deficiency state (congenital lipoid adrenal hyperplasia, lipoid CAH) involves the complex interplay of four areas of study: the acute regulation of steroidogenesis, clinical phenomena in lipoid CAH, the enzymatic conversion of cholesterol to pregnenolone in steroidogenic mitochondria, and the cell biology of StAR. This review traces the origins of these areas of study, describes how they have been woven into an increasingly coherent fabric, and tries to explore some remaining loose ends in this ongoing field of endocrine research. Abundant research from multiple laboratories establishes that StAR is required for the rapid, abundant steroidal responses of the adrenals and gonads, but all steroidogenic cells, especially the placenta, have StAR-independent steroidogenesis, whose basis remains under investigation.

View Article and Find Full Text PDF

Rare Types of Congenital Adrenal Hyperplasias Other Than 21-hydroxylase Deficiency.

J Clin Res Pediatr Endocrinol

January 2025

University of Health Sciences Turkey, Dr. Sami Ulus Child Health and Diseases Training and Research Hospital, Clinic of Pediatric Endocrinology, Ankara, Turkey

Although the most common cause of congenital adrenal hyperplasia (CAH) worldwide is 21-hydroxylase deficiency (21-OHD), which accounts for more than 95% of cases, other rare causes of CAH such as 11-beta-hydroxylase deficiency (11β-OHD), 3-beta-hydroxy steroid dehydrogenase (3β-HSD) deficiency, 17-hydroxylase deficiency and lipoid CAH (LCAH) may also be encountered in clinical practice. 11β-OHD is the most common type of CAH after 21-OHD, and CYP11B1 deficiency in adrenal steroidogenesis causes the inability to produce cortisol and aldosterone and the excessive production of adrenal androgens. Although the clinical and laboratory features are similar to 21-OHD, findings of mineralocorticoid deficiency are not observed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!