Calcium- and voltage-gated (BK) K(+) channels encoded by Slo1 play an essential role in nervous systems. Although it shares many common features with voltage-dependent K(V) channels, the BK channel exhibits differences in gating and inactivation. Using a mutant in which FWI replaces three residues (FIW) in the NH(2) terminus of wild-type beta2-subunits, in conjunction with alanine-scanning mutagenesis of the Slo1 S6 segment, we identify that the NH(2) terminus of beta2-subunits interacts with the residues near the cytosolic superficial mouth of BK channels during inactivation. The cytosolic blockers did not share the sites with NH(2) terminus of beta2-subunits. A novel blocking-inactivating scheme was proposed to account for the observed non-competition inactivation. Our results also suggest that the residue Ile-323 plays a dual role in interacting with the NH(2) terminus of beta2-subunits and modulating the gating of BK channels.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M607063200DOI Listing

Publication Analysis

Top Keywords

nh2 terminus
20
terminus beta2-subunits
12
nh2
5
terminus
5
interaction sites
4
sites slo1
4
slo1 pore
4
pore nh2
4
terminus beta2
4
beta2 subunit
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!