Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: One of the most interesting problems in molecular immunology is epitope mapping, i.e. the identification of the regions of interaction between an antigen and an antibody. The solution to this problem, even if approximate, would help in designing experiments to precisely map the residues involved in the interaction and could be instrumental both in designing peptides able to mimic the interacting surface of the antigen and in understanding where immunologically important regions are located in its three-dimensional structure. From an experimental point of view, both genetically encoded and chemically synthesised peptide libraries can be used to identify sequences recognized by a given antibody. The problem then arises of which region of a folded protein the selected peptides correspond to.
Results: We have developed a method able to find the surface region of a protein that can be effectively mimicked by a peptide, given the structure of the protein and the maximum number of side chains deemed to be required for recognition. The method is implemented as a publicly available server. It can also find and report all peptide sequences of a specified length that can mimic the surface of a given protein and store them in a database. The immediate application of the server is the mapping of antibody epitopes, however the system is sufficiently flexible for allowing other questions to be asked, for example one can compare the peptides representing the surface of two proteins known to interact with the same macromolecule to find which is the most likely interacting region.
Conclusion: We believe that the MEPS server, available at http://www.caspur.it/meps, will be a useful tool for immunologists and structural and computational biologists. We plan to use it ourselves to implement a database of "surface mimicking peptides" for all proteins of known structure and proteins that can be reliably modelled by comparative modelling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1885858 | PMC |
http://dx.doi.org/10.1186/1471-2105-8-S1-S6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!