Specific control of gene expression by synthetic oligonucleotides (ON) is now widely used for target validation but clinical applications are limited by ON bioavailability. Moreover, most currently used strategies for physical and chemical delivery cannot be easily implemented in vivo. This article reviews new strategies which appear promising for ON delivery. The first part deals with ON chemical modifications aiming at improving cellular uptake as for instance the grafting of cationic groups on the ON backbone. The second part concerns ON conjugation to cell penetrating peptides.

Download full-text PDF

Source
http://dx.doi.org/10.2174/156802607780487704DOI Listing

Publication Analysis

Top Keywords

chemical modifications
8
cellular uptake
8
modifications improve
4
improve cellular
4
uptake oligonucleotides
4
oligonucleotides specific
4
specific control
4
control gene
4
gene expression
4
expression synthetic
4

Similar Publications

The scarcity of cost-effective and durable iridium-free anode electrocatalysts for the oxygen evolution reaction (OER) poses a significant challenge to the widespread application of the proton exchange membrane water electrolyzer (PEMWE). To address the electrochemical oxidation and dissolution issues of Ru-based electrocatalysts, an electron-donating modification strategy is developed to stabilize WRuO under harsh oxidative conditions. The optimized catalyst with a low Zirconium doping (Zr, 1 wt.

View Article and Find Full Text PDF

As emerging cutting-edge energy storage technologies, aqueous zinc-ion batteries (AZIBs) have garnered extensive research attention for its high safety, low cost, abundant raw materials, and, eco-friendliness. Nevertheless, the commercialization of AZIBs is mainly limited by insufficient development of cathode materials. Among potential candidates, MXene-based materials stand out as a promising option for their unique combination of hydrophilicity and conductivity.

View Article and Find Full Text PDF

We study the influence of electrical biasing on the modification of the chemical composition and electrical performance of perovskite solar cells (PSCs) by coupling electrochemical impedance spectroscopy (EIS) and scanning transmission X-ray microscopy (STXM) techniques. EIS reveals the formation of charge accumulation at the interfaces and changes in the resistive and capacitive properties. STXM study on PSCs after applying a strong electric field for a long biasing time indicates the breakdown of methylammonium (MA) cation, promoting iodide ions to migrate and create defects at the interface.

View Article and Find Full Text PDF

Upgrade of Weak σ-hole Bond Donors via Cr(CO)3 Complexation.

Chemistry

January 2025

Politecnico di Milano, Department of Chemistry, Materials, Chemical Engineer., via Mancinelli 7, 20131, Milan, ITALY.

Molecular recognition mediated by s-hole interactions is enhanced as the electrostatic potential at the σ-hole becomes increasingly positive. Traditional methods to strengthen σ-hole donor ability of atoms such as halogens often involve covalent modifications, such as, introducing electron-withdrawing substituents (neutral or positively charged) or electrochemical oxidation. Metal coordination, a relatively underexplored approach, offers a promising alternative.

View Article and Find Full Text PDF

Surface Modification of Polyvinylidene Fluoride Latex Nanoparticles through Chain Entanglement by Poly(meth)acrylate Monomer Swelling Seeded Emulsion Polymerization.

Langmuir

January 2025

School of Chemistry and Chemical Engineering, State Key Laboratory of Polyolefins and Catalysis, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.

Polyvinylidene fluoride (PVDF) latex nanoparticles serve as a versatile platform for surface modification due to their role as precursors in PVDF manufacturing. However, the strong chemical stability and poor compatibility of PVDF present significant challenges for effective surface modification. To address this, we developed a method that facilitates surface modification through chain entanglement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!