Aims/hypothesis: Diabetes mellitus is a strong risk factor for the development of heart failure, and left ventricular (LV) hypertrophy has been detected in a significant proportion of diabetic patients. Because several studies have suggested that the Na(+)/H(+) exchanger (NHE1) plays a part in the molecular mechanisms involved in cardiac hypertrophy, we investigated its activity and its role in LV myocytes from the Goto-Kakizaki (GK) rat model of type 2 diabetes.

Materials And Methods: Fluorometric measurements were used to assess sarcolemmal NHE1 activity in isolated myocytes. NHE1 levels and the possible molecular pathways driving and/or related to NHE1 activity were investigated in relation to the diabetic LV phenotype.

Results: Enhanced NHE1 activity was associated with LV myocyte hypertrophy. This occurred in the absence of any change in NHE1 protein levels; however, activation of several molecular pathways related to NHE1 activity was demonstrated. Thus, phosphorylation of the extracellular signal-regulated protein kinase (Erk), of the protein kinase Akt (also known as protein kinase B) and of the Ca(2+)/calmodulin-dependent kinase II was increased in GK LV myocytes. Intracellular Ca(2+) levels were also increased. Chronic treatment (10-12 weeks) with the NHE1 inhibitor cariporide normalised NHE1 activity, decreased [Formula: see text] levels and reduced LV myocyte hypertrophy. Moreover, among the various activated pathways, cariporide treatment markedly reduced Akt activity only.

Conclusions/interpretation: These findings indicate that activation of the Akt pathway represents a likely mechanism mediating the hypertrophic effect of increased NHE1 activity in the GK model of type 2 diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00125-007-0628-xDOI Listing

Publication Analysis

Top Keywords

nhe1 activity
24
model type
12
protein kinase
12
nhe1
10
na+/h+ exchanger
8
left ventricular
8
ventricular hypertrophy
8
goto-kakizaki rat
8
rat model
8
type diabetes
8

Similar Publications

Article Synopsis
  • Human mesenchymal stem cells (hMSCs) react to mechanical stimuli like stiffness and fluid viscosity, which impacts their behavior.
  • In environments with high fluid viscosity, hMSCs favor an osteogenic (bone-forming) phenotype over an adipogenic (fat-forming) one by altering their actin structure and enhancing cellular activities.
  • This research highlights fluid viscosity as an important factor that not only influences hMSC differentiation but also encourages a more immunosuppressive M2 macrophage phenotype.
View Article and Find Full Text PDF

Repurposing of Empagliflozin as Cardioprotective Drug: An in-silico Approach.

Cardiovasc Hematol Disord Drug Targets

December 2024

Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow (U.P.), 226026, India.

Background: Drug repurposing involves investigating new indications or uses for drugs that have already been approved for clinical use. Empagliflozin is a C-glycosyl compound characterized by the presence of a beta-glucosyl residue. It functions as a sodium-glucose co-transporter 2 inhibitor and is utilized to enhance glycemic control in adults diagnosed with type 2 diabetes mellitus.

View Article and Find Full Text PDF

The interaction between cancer cells and the extracellular matrix (ECM) plays a pivotal role in tumour progression. While the extracellular degradation of ECM proteins has been well characterised, ECM endocytosis and its impact on cancer cell progression, migration, and metastasis is poorly understood. ECM internalisation is increased in invasive breast cancer cells, suggesting it may support invasiveness.

View Article and Find Full Text PDF

Activation of receptor-independent fluid-phase pinocytosis promotes foamy monocyte formation in atherosclerotic mice.

Redox Biol

December 2024

Vascular Biology Center, Augusta University, Medical College of Georgia, Augusta, GA, 30912, USA; Department of Pharmacology and Toxicology, Augusta University, Medical College of Georgia, Augusta, GA, 30912, USA. Electronic address:

Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of death worldwide. Clinical and experimental data demonstrated that circulating monocytes internalize plasma lipoproteins and become lipid-laden foamy cells in hypercholesterolemic subjects. This study was designed to identify the endocytic mechanisms responsible for foamy monocyte formation, perform functional and transcriptomic analysis of foamy and non-foamy monocytes relevant to ASCVD, and characterize specific monocyte subsets isolated from the circulation of normocholesterolemic controls and hypercholesterolemic patients.

View Article and Find Full Text PDF

CARMIL1-AA selectively inhibits macropinocytosis while sparing autophagy.

Mol Biol Cell

January 2025

Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92617.

Macropinocytosis is reported to fuel tumor growth and drug resistance by allowing cancer cells to scavenge extracellular macromolecules. However, accurately defining the role of macropinocytosis in cancer depends on our ability to selectively block this process. 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) is widely used to inhibit macropinocytosis but affects multiple Na/H exchangers (NHE) that regulate cytoplasmic and organellar pH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!